Aria unui trapez curbiliniu. Calculator online Calculați o integrală definită (aria unui trapez curbiliniu)

Pătrat trapez curbiliniu este numeric egală cu integrala definită

Orice integrală definită (care există) are o semnificație geometrică foarte bună. În clasă, am spus că o integrală definită este un număr. Și acum este timpul să precizăm un alt fapt util. Din punct de vedere al geometriei, integrala definită este AREA.

Acesta este, integrala definită (dacă există) corespunde geometric cu aria unei figuri. De exemplu, luați în considerare integrala definită . Integrandul definește o anumită curbă pe plan (poate fi întotdeauna desenată dacă se dorește), iar integrala definită în sine este numeric egală cu aria trapezului curbiliniu corespunzător.

Exemplul 1

Aceasta este o declarație tipică de sarcină. În primul rând și punct crucial soluții – desen. Mai mult, desenul trebuie construit DREAPTA.

Când construiești un plan, recomand următoarea ordine: primul este mai bine să construiți toate liniile (dacă există) și numai după- parabole, hiperbole, grafice ale altor funcții. Graficele de funcții sunt mai profitabile de construit punct cu punct, tehnica construcției punctuale poate fi găsită în material de referinta.

Acolo puteți găsi și material care este foarte util în legătură cu lecția noastră - cum să construiți rapid o parabolă.

În această problemă, soluția ar putea arăta astfel.
Să facem un desen (rețineți că ecuația definește axa):


Nu voi ecloza un trapez curbiliniu, este evident despre ce zonă vorbim aici. Solutia continua asa:

Pe segment se află graficul funcției peste axă, de aceea:

Răspuns:

Care are dificultăți în calcularea integralei definite și aplicarea formulei Newton-Leibniz , consultați prelegerea Integrala definita. Exemple de soluții.

După ce sarcina este finalizată, este întotdeauna util să priviți desenul și să vă dați seama dacă răspunsul este real. În acest caz, „cu ochi” numărăm numărul de celule din desen - ei bine, aproximativ 9 vor fi tastate, se pare că este adevărat. Este destul de clar că dacă am avea, să zicem, răspunsul: 20 de unități pătrate, atunci, evident, s-a făcut o greșeală undeva - 20 de celule evident nu se încadrează în figura în cauză, cel mult o duzină. Dacă răspunsul s-a dovedit a fi negativ, atunci și sarcina a fost rezolvată incorect.

Exemplul 2

Calculați aria figurii delimitate de linii, , și axa

Acesta este un exemplu de do-it-yourself. Soluție completă și răspuns la sfârșitul lecției.

Ce trebuie făcut dacă este localizat trapezul curbiliniu sub ax?

Exemplul 3

Calculați aria figurii delimitată de linii și axe de coordonate.

Soluție: Să facem un desen:

Dacă un trapez curbiliniu complet sub ax, atunci aria sa poate fi găsită prin formula:
În acest caz:

Atenţie! Cele două tipuri de sarcini nu trebuie confundate:

1) Dacă vi se cere să rezolvați doar o integrală definită fără nicio semnificație geometrică, atunci aceasta poate fi negativă.

2) Dacă vi se cere să găsiți aria unei figuri folosind o integrală definită, atunci aria este întotdeauna pozitivă! De aceea, în formula luată în considerare apare minusul.

În practică, cel mai adesea figura este situată atât în ​​semiplanul superior, cât și în cel inferior și, prin urmare, de la cele mai simple probleme școlare, trecem la exemple mai semnificative.

Exemplul 4

Găsiți aria unei figuri plate delimitate de linii , .

Soluție: Mai întâi trebuie să faci un desen. În general, atunci când construim un desen în probleme de zonă, suntem cel mai interesați de punctele de intersecție ale liniilor. Să găsim punctele de intersecție ale parabolei și ale dreptei. Acest lucru se poate face în două moduri. Prima modalitate este analitică. Rezolvam ecuatia:

Prin urmare, limita inferioară a integrării, limita superioară a integrării.
Este mai bine să nu utilizați această metodă dacă este posibil.

Este mult mai profitabil și mai rapid să construiești liniile punct cu punct, în timp ce limitele integrării se află ca „de la sine”. Tehnica de construcție punct cu punct pentru diferite diagrame este discutată în detaliu în ajutor Grafice și proprietăți ale funcțiilor elementare. Cu toate acestea, metoda analitică de găsire a limitelor mai trebuie folosită uneori dacă, de exemplu, graficul este suficient de mare sau construcția filetată nu a evidențiat limitele integrării (pot fi fracționale sau iraționale). Și vom lua în considerare și un astfel de exemplu.

Ne întoarcem la sarcina noastră: este mai rațional să construim mai întâi o linie dreaptă și abia apoi o parabolă. Hai sa facem un desen:

Repet că, la construcția punctual, limitele integrării sunt cel mai adesea descoperite „automat”.

Și acum formula de lucru: Daca pe un segment vreo functie continua mai mare sau egal o funcție continuă, atunci aria figurii corespunzătoare poate fi găsită prin formula:

Aici nu mai este necesar să ne gândim unde se află figura - deasupra axei sau sub axa și, aproximativ vorbind, contează ce diagramă este SUS(față de alt grafic), și care este JOS.

În exemplul luat în considerare, este evident că pe segment parabola este situată deasupra liniei drepte și, prin urmare, este necesar să se scadă din

Finalizarea soluției ar putea arăta astfel:

Figura dorită este limitată de o parabolă de sus și de o linie dreaptă de jos.
Pe segmentul , conform formulei corespunzătoare:

Răspuns:

De fapt, formula școlară pentru aria unui trapez curbiliniu în semiplanul inferior (a se vedea exemplul simplu nr. 3) este un caz special al formulei . Deoarece axa este dată de ecuație, iar graficul funcției este situat sub axă, atunci

Și acum câteva exemple pentru o soluție independentă

Exemplul 5

Exemplul 6

Găsiți aria figurii încadrată de liniile , .

În cursul rezolvării problemelor pentru calcularea ariei folosind o anumită integrală, se întâmplă uneori un incident amuzant. Desenul a fost făcut corect, calculele au fost corecte, dar din cauza neatenției... a găsit zona figurii greșite, așa s-a încurcat servitorul tău ascultător de mai multe ori. Aici caz real din viata:

Exemplul 7

Calculați aria figurii delimitată de liniile , , , .

Să desenăm mai întâi:

Figura a cărei zonă trebuie să o găsim este umbrită în albastru.(uitați-vă cu atenție la starea - cum este limitată cifra!). Dar, în practică, din cauza neatenției, se întâmplă adesea că trebuie să găsiți zona figurii care este umbrită. în verde!

Acest exemplu este, de asemenea, util prin faptul că în el aria figurii este calculată folosind două integrale definite. Într-adevăr:



1) Pe segmentul de deasupra axei există un grafic în linie dreaptă;

2) Pe segmentul de deasupra axei este un grafic de hiperbolă.

Este destul de evident că zonele pot (și ar trebui) să fie adăugate, prin urmare:

Răspuns:

Exemplul 8

Calculați aria unei figuri delimitate de linii,
Să prezentăm ecuațiile într-o formă „școală” și să realizăm un desen punct cu punct:

Din desen se vede că limita noastră superioară este „bună”: .
Dar care este limita inferioară? Este clar că acesta nu este un număr întreg, dar ce? Poate ? Dar unde este garanția că desenul este realizat cu acuratețe perfectă, se poate dovedi că. Sau rădăcină. Dacă nu am înțeles deloc graficul corect?

În astfel de cazuri, trebuie să petrecem timp suplimentar și să rafinați limitele integrării analitic.

Să găsim punctele de intersecție ale dreptei și ale parabolei.
Pentru a face acest lucru, rezolvăm ecuația:

Prin urmare, .

Soluția ulterioară este trivială, principalul lucru este să nu vă confundați în substituții și semne, calculele de aici nu sunt cele mai ușoare.

Pe segment , conform formulei corespunzătoare:

Răspuns:

Ei bine, în încheierea lecției, vom considera două sarcini mai dificile.

Exemplul 9

Calculați aria figurii delimitată de drepte , ,

Soluție: Desenați această figură în desen.

Pentru desenul punct cu punct, trebuie să știți aspect sinusoide (și, în general, este util să știți grafice ale tuturor funcţiilor elementare), precum și unele valori sinus, acestea pot fi găsite în tabel trigonometric. În unele cazuri (ca și în acest caz), este permisă construirea unui desen schematic, pe care graficele și limitele de integrare trebuie să fie afișate în principiu corect.

Nu există probleme cu limitele de integrare aici, acestea decurg direct din condiția: - „x” se schimbă de la zero la „pi”. Luăm o altă decizie:

Pe segment, graficul funcției este situat deasupra axei, prin urmare:

(1) Modul în care sinusurile și cosinusurile sunt integrate în puteri impare poate fi văzut în lecție Integrale ale funcțiilor trigonometrice. Aceasta este o tehnică tipică, ciupim un sinus.

(2) Folosim identitatea trigonometrică de bază în formă

(3) Să schimbăm variabila , apoi:

Noi redistribuiri ale integrării:

Cine are cu adevărat o afacere proastă cu înlocuiri, te rog să mergi la lecție Metoda înlocuirii în integrală nedefinită. Pentru cei care nu sunt foarte clari despre algoritmul de înlocuire într-o integrală definită, vizitați pagina Integrala definita. Exemple de soluții.

Integrala definita. Cum se calculează aria unei figuri

Ne întoarcem acum la considerarea aplicațiilor calculului integral. În această lecție, vom analiza o sarcină tipică și cea mai comună. Cum se utilizează o integrală definită pentru a calcula aria unei figuri plane. În cele din urmă, cei care caută sens în matematica superioară - să-l găsească. Nu stii niciodata. Va trebui să ne apropiem în viață zona cabana funcții elementare și găsiți-i aria folosind o integrală definită.

Pentru a stăpâni cu succes materialul, trebuie să:

1) Înțelegeți integrala nedefinită cel puțin la un nivel intermediar. Astfel, manechinii ar trebui să citească mai întâi lecția Nu.

2) Să fie capabil să aplice formula Newton-Leibniz și să calculeze integrala definită. Forja cald relații de prietenie cu integrale definite pot fi găsite pe pagină Integrala definita. Exemple de soluții.

De fapt, pentru a găsi aria unei figuri, nu aveți nevoie de atât de multe cunoștințe despre integrala nedefinită și definită. Sarcina „calculați aria folosind o integrală definită” implică întotdeauna construirea unui desen, mult mai mult problemă de actualitate vor fi cunoștințele și abilitățile tale de desen. În acest sens, este utilă reîmprospătarea memoriei graficelor principalelor funcții elementare și, cel puțin, să se poată construi o dreaptă, o parabolă și o hiperbolă. Acest lucru se poate face (mulți au nevoie) cu ajutorul material metodologicși articole despre transformările geometrice ale graficelor.

De fapt, toată lumea este familiarizată cu problema găsirii zonei folosind o integrală definită încă de la școală și vom merge puțin înaintea programului școlar. Acest articol s-ar putea să nu existe deloc, dar adevărul este că problema apare în 99 de cazuri din 100, când un elev este chinuit de un turn urât cu entuziasm stăpânind un curs de matematică superioară.

Materialele acestui atelier sunt prezentate simplu, detaliat și cu un minim de teorie.

Să începem cu un trapez curbiliniu.

Trapez curbiliniu se numește figură plată delimitată de axa , linii drepte și graficul unei funcții continuă pe un segment care nu își schimbă semnul pe acest interval. Să fie localizată această cifră nu mai puțin abscisă:

Apoi aria unui trapez curbiliniu este numeric egală cu o anumită integrală. Orice integrală definită (care există) are o semnificație geometrică foarte bună. La lecție Integrala definita. Exemple de soluții Am spus că o integrală definită este un număr. Și acum este timpul să precizăm un alt fapt util. Din punct de vedere al geometriei, integrala definită este AREA.

Acesta este, integrala definită (dacă există) corespunde geometric cu aria unei figuri. De exemplu, luați în considerare integrala definită . Integrandul definește o curbă pe planul care se află deasupra axei (cei care doresc pot finaliza desenul), iar integrala definită în sine este numeric egală cu aria trapezului curbiliniu corespunzător.

Exemplul 1

Aceasta este o declarație tipică de sarcină. Primul și cel mai important moment al deciziei este construcția unui desen. Mai mult, desenul trebuie construit DREAPTA.

Când construiești un plan, recomand următoarea ordine: primul este mai bine să construiți toate liniile (dacă există) și numai după- parabole, hiperbole, grafice ale altor funcții. Graficele de funcții sunt mai profitabile de construit punct cu punct, cu tehnica construcției punctuale pot fi găsite în materialul de referință Grafice și proprietăți ale funcțiilor elementare. Acolo puteți găsi și material care este foarte util în legătură cu lecția noastră - cum să construiți rapid o parabolă.

În această problemă, soluția ar putea arăta astfel.
Să facem un desen (rețineți că ecuația definește axa):


Nu voi ecloza un trapez curbiliniu, este evident despre ce zonă vorbim aici. Solutia continua asa:

Pe segment se află graficul funcției peste axă, de aceea:

Răspuns:

Care are dificultăți în calcularea integralei definite și aplicarea formulei Newton-Leibniz , consultați prelegerea Integrala definita. Exemple de soluții.

După ce sarcina este finalizată, este întotdeauna util să priviți desenul și să vă dați seama dacă răspunsul este real. În acest caz, „cu ochi” numărăm numărul de celule din desen - ei bine, aproximativ 9 vor fi tastate, se pare că este adevărat. Este destul de clar că dacă am avea, să zicem, răspunsul: 20 de unități pătrate, atunci, evident, s-a făcut o greșeală undeva - 20 de celule evident nu se încadrează în figura în cauză, cel mult o duzină. Dacă răspunsul s-a dovedit a fi negativ, atunci și sarcina a fost rezolvată incorect.

Exemplul 2

Calculați aria figurii delimitată de liniile , și axa

Acesta este un exemplu de do-it-yourself. Soluție completă și răspuns la sfârșitul lecției.

Ce trebuie făcut dacă este localizat trapezul curbiliniu sub ax?

Exemplul 3

Calculați aria figurii delimitată de linii și axe de coordonate.

Soluţie: Hai să facem un desen:

Dacă se află trapezul curbiliniu sub axă(sau cel puțin nu mai sus axa dată), atunci aria sa poate fi găsită prin formula:
În acest caz:

Atenţie! Nu confunda cele două tipuri de sarcini:

1) Dacă vi se cere să rezolvați doar o integrală definită fără nicio semnificație geometrică, atunci aceasta poate fi negativă.

2) Dacă vi se cere să găsiți aria unei figuri folosind o integrală definită, atunci aria este întotdeauna pozitivă! De aceea, în formula luată în considerare apare minusul.

În practică, cel mai adesea figura este situată atât în ​​semiplanul superior, cât și în cel inferior și, prin urmare, de la cele mai simple probleme școlare, trecem la exemple mai semnificative.

Exemplul 4

Găsiți aria unei figuri plate delimitate de linii , .

Soluţie: Mai întâi trebuie să finalizați desenul. În general, atunci când construim un desen în probleme de zonă, suntem cel mai interesați de punctele de intersecție ale liniilor. Să găsim punctele de intersecție ale parabolei și ale dreptei. Acest lucru se poate face în două moduri. Prima modalitate este analitică. Rezolvam ecuatia:

Prin urmare, limita inferioară a integrării, limita superioară a integrării.
Cel mai bine este să nu utilizați această metodă dacă este posibil..

Este mult mai profitabil și mai rapid să construiești liniile punct cu punct, în timp ce limitele integrării se află ca „de la sine”. Tehnica de construcție punct cu punct pentru diferite diagrame este discutată în detaliu în ajutor Grafice și proprietăți ale funcțiilor elementare. Cu toate acestea, metoda analitică de găsire a limitelor mai trebuie folosită uneori dacă, de exemplu, graficul este suficient de mare sau construcția filetată nu a evidențiat limitele integrării (pot fi fracționale sau iraționale). Și vom lua în considerare și un astfel de exemplu.

Ne întoarcem la sarcina noastră: este mai rațional să construim mai întâi o linie dreaptă și abia apoi o parabolă. Hai sa facem un desen:

Repet că, la construcția punctual, limitele integrării sunt cel mai adesea descoperite „automat”.

Și acum formula de lucru: Dacă există o funcție continuă pe interval mai mare sau egal o funcție continuă, apoi aria figurii delimitată de graficele acestor funcții și linii drepte, poate fi găsită prin formula:

Aici nu mai este necesar să ne gândim unde se află figura - deasupra axei sau sub axa și, aproximativ vorbind, contează ce diagramă este SUS(față de alt grafic), și care este JOS.

În exemplul luat în considerare, este evident că pe segment parabola este situată deasupra liniei drepte și, prin urmare, este necesar să se scadă din

Finalizarea soluției ar putea arăta astfel:

Figura dorită este limitată de o parabolă de sus și de o linie dreaptă de jos.
Pe segmentul , conform formulei corespunzătoare:

Răspuns:

De fapt, formula școlară pentru aria unui trapez curbiliniu în semiplanul inferior (a se vedea exemplul simplu nr. 3) este un caz special al formulei . Deoarece axa este dată de ecuația , iar graficul funcției este situat nu mai sus topoare, atunci

Și acum câteva exemple pentru o soluție independentă

Exemplul 5

Exemplul 6

Găsiți aria figurii încadrată de liniile , .

În cursul rezolvării problemelor pentru calcularea ariei folosind o anumită integrală, se întâmplă uneori un incident amuzant. Desenul a fost făcut corect, calculele au fost corecte, dar din cauza neatenției... a găsit zona figurii greșite, așa s-a încurcat servitorul tău ascultător de mai multe ori. Iată un caz real:

Exemplul 7

Calculați aria figurii delimitată de liniile , , , .

Soluţie: Să facem mai întâi un desen:

… Eh, desenul a ieșit prost, dar totul pare să fie lizibil.

Figura a cărei zonă trebuie să o găsim este umbrită în albastru.(uitați-vă cu atenție la starea - cum este limitată cifra!). Dar, în practică, din cauza neatenției, apare adesea o „glitch”, că trebuie să găsiți zona figurii care este umbrită în verde!

Acest exemplu este, de asemenea, util prin faptul că în el aria figurii este calculată folosind două integrale definite. Într-adevăr:

1) Pe segmentul de deasupra axei există un grafic în linie dreaptă;

2) Pe segmentul de deasupra axei este un grafic de hiperbolă.

Este destul de evident că zonele pot (și ar trebui) să fie adăugate, prin urmare:

Răspuns:

Să trecem la o sarcină mai semnificativă.

Exemplul 8

Calculați aria unei figuri delimitate de linii,
Să prezentăm ecuațiile într-o formă „școală” și să realizăm un desen punct cu punct:

Din desen se vede că limita noastră superioară este „bună”: .
Dar care este limita inferioară? Este clar că acesta nu este un număr întreg, dar ce? Poate ? Dar unde este garanția că desenul este realizat cu acuratețe perfectă, se poate dovedi că. Sau rădăcină. Dacă nu am înțeles deloc graficul corect?

În astfel de cazuri, trebuie să petrecem timp suplimentar și să rafinați limitele integrării analitic.

Să găsim punctele de intersecție ale dreptei și ale parabolei.
Pentru a face acest lucru, rezolvăm ecuația:


,

Într-adevăr, .

Soluția ulterioară este trivială, principalul lucru este să nu vă confundați în substituții și semne, calculele de aici nu sunt cele mai ușoare.

Pe segment , conform formulei corespunzătoare:

Răspuns:

Ei bine, în încheierea lecției, vom considera două sarcini mai dificile.

Exemplul 9

Calculați aria figurii delimitată de drepte , ,

Soluţie: Desenați această figură în desen.

La naiba, am uitat să semnez programul și refac poza, scuze, nu hotz. Nu un desen, pe scurt, azi este o zi =)

Pentru construcția punct cu punct, este necesar să se cunoască aspectul sinusoidei (și în general este util să se cunoască grafice ale tuturor funcţiilor elementare), precum și unele valori sinus, acestea pot fi găsite în tabel trigonometric. În unele cazuri (ca și în acest caz), este permisă construirea unui desen schematic, pe care graficele și limitele de integrare trebuie să fie afișate în principiu corect.

Nu există probleme cu limitele de integrare aici, acestea decurg direct din condiția: - „x” se schimbă de la zero la „pi”. Luăm o altă decizie:

Pe segment, graficul funcției este situat deasupra axei, prin urmare:

Sarcina 1(la calculul ariei unui trapez curbiliniu).

În sistemul de coordonate dreptunghiular cartezian xOy, este dată o cifră (a se vedea figura), delimitată de axa x, linii drepte x \u003d a, x \u003d b (un trapez curbiliniu. Este necesar să se calculeze aria lui \ u200b\u200btrapezul curbiliniu.
Soluţie. Geometria ne oferă rețete pentru calcularea ariilor poligoanelor și a unor părți ale unui cerc (sector, segment). Folosind considerații geometrice, vom putea găsi doar o valoare aproximativă a ariei necesare, argumentând după cum urmează.

Să împărțim segmentul [a; b] (baza unui trapez curbiliniu) în n părți egale; această partiție este fezabilă cu ajutorul punctelor x 1 , x 2 , ... x k , ... x n-1 . Să tragem linii prin aceste puncte paralele cu axa y. Apoi, trapezul curbiliniu dat va fi împărțit în n părți, în coloane înguste. Aria întregului trapez este egală cu suma ariilor coloanelor.

Luați în considerare separat coloana k-a, adică trapez curbiliniu, a cărui bază este un segment. Să-l înlocuim cu un dreptunghi cu aceeași bază și înălțime egală cu f(x k) (vezi figura). Aria dreptunghiului este \(f(x_k) \cdot \Delta x_k \), unde \(\Delta x_k \) este lungimea segmentului; este firesc să considerăm produsul compilat ca o valoare aproximativă a ariei coloanei k-a.

Dacă procedăm acum la fel cu toate celelalte coloane, atunci ajungem la următorul rezultat: aria S a unui trapez curbiliniu dat este aproximativ egală cu aria S n a unei figuri în trepte formată din n dreptunghiuri (vezi figura):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_(n-1))\Delta x_(n-1) \)
Aici, de dragul uniformității notației, considerăm că a \u003d x 0, b \u003d x n; \(\Delta x_0 \) - lungimea segmentului , \(\Delta x_1 \) - lungimea segmentului , etc; în timp ce, după cum am convenit mai sus, \(\Delta x_0 = \dots = \Delta x_(n-1) \)

Deci, \(S \approx S_n \), iar această egalitate aproximativă este cu atât mai precisă, cu atât n este mai mare.
Prin definiție, se presupune că aria dorită a trapezului curbiliniu este egală cu limita secvenței (S n):
$$ S = \lim_(n \to \infty) S_n $$

Sarcina 2(despre mutarea unui punct)
Un punct material se deplasează în linie dreaptă. Dependența vitezei de timp este exprimată prin formula v = v(t). Aflați deplasarea unui punct în intervalul de timp [a; b].
Soluţie. Dacă mișcarea ar fi uniformă, atunci problema s-ar rezolva foarte simplu: s = vt, i.e. s = v(b-a). Pentru mișcarea neuniformă, trebuie să folosiți aceleași idei pe care s-a bazat soluția problemei anterioare.
1) Împărțiți intervalul de timp [a; b] în n părți egale.
2) Luați în considerare un interval de timp și presupuneți că în acest interval de timp viteza a fost constantă, cum ar fi la momentul t k . Deci, presupunem că v = v(t k).
3) Găsiți valoarea aproximativă a deplasării punctului pe intervalul de timp, această valoare aproximativă va fi notată cu s k
\(s_k = v(t_k) \Delta t_k \)
4) Aflați valoarea aproximativă a deplasării s:
\(s \aprox S_n \) unde
\(S_n = s_0 + \dots + s_(n-1) = v(t_0)\Delta t_0 + \dots + v(t_(n-1)) \Delta t_(n-1) \)
5) Deplasarea necesară este egală cu limita secvenței (S n):
$$ s = \lim_(n \to \infty) S_n $$

Să rezumam. Soluții diverse sarcini redusă la același model matematic. Multe probleme din diverse domenii ale științei și tehnologiei duc la același model în procesul de soluționare. Deci, acest model matematic ar trebui studiat special.

Conceptul de integrală definită

Să dăm o descriere matematică a modelului care a fost construit în cele trei probleme luate în considerare pentru funcția y = f(x), care este continuă (dar nu neapărat nenegativă, așa cum sa presupus în problemele luate în considerare) pe segmentul [ A; b]:
1) împărțiți segmentul [a; b] în n părți egale;
2) suma $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_(n-1))\Delta x_(n-1) $$
3) calculați $$ \lim_(n \to \infty) S_n $$

În cursul analizei matematice, s-a dovedit că această limită există în cazul unei funcții continue (sau continue pe bucăți). El este numit o integrală definită a funcției y = f(x) peste segmentul [a; b]și se notează astfel:
\(\int\limits_a^b f(x) dx \)
Numerele a și b se numesc limite de integrare (inferioară și respectiv superioară).

Să revenim la sarcinile discutate mai sus. Definiția zonei dată în problema 1 poate fi acum rescrisă după cum urmează:
\(S = \int\limits_a^b f(x) dx \)
aici S este aria trapezului curbiliniu prezentat în figura de mai sus. Acesta este ce sensul geometric al integralei definite.

Definiția deplasării s a unui punct care se deplasează în linie dreaptă cu viteza v = v(t) pe intervalul de timp de la t = a la t = b, dată în problema 2, poate fi rescrisă astfel:

Formula Newton - Leibniz

Pentru început, să răspundem la întrebarea: care este relația dintre o integrală definită și o antiderivată?

Răspunsul poate fi găsit în problema 2. Pe de o parte, deplasarea s a unui punct care se deplasează de-a lungul unei drepte cu viteza v = v(t) pe un interval de timp de la t = a la t = b și se calculează prin formula
\(S = \int\limits_a^b v(t) dt \)

Pe de alta parte, coordonata punctului de miscare este antiderivata pentru viteza - sa o notam s(t); deci deplasarea s este exprimată prin formula s = s(b) - s(a). Ca rezultat, obținem:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
unde s(t) este antiderivată pentru v(t).

Următoarea teoremă a fost demonstrată în cursul analizei matematice.
Teorema. Dacă funcția y = f(x) este continuă pe segmentul [a; b], apoi formula
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
unde F(x) este antiderivată pentru f(x).

Această formulă este de obicei numită formula Newton-Leibnizîn onoarea fizicianului englez Isaac Newton (1643-1727) și a filozofului german Gottfried Leibniz (1646-1716), care l-au primit independent unul de celălalt și aproape simultan.

În practică, în loc să scrie F(b) - F(a), ei folosesc notația \(\left. F(x)\right|_a^b \) (uneori se numește dubla substitutie) și, în consecință, rescrieți formula Newton-Leibniz în această formă:
\(S = \int\limits_a^b f(x) dx = \left. F(x)\right|_a^b \)

Calculând o integrală definită, găsiți mai întâi antiderivată și apoi efectuați o dublă substituție.

Pe baza formulei Newton-Leibniz, se pot obține două proprietăți ale unei integrale definite.

Proprietatea 1. Integrala sumei funcțiilor este egală cu suma integralelor:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

Proprietatea 2. Factorul constant poate fi scos din semnul integral:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

Calcularea ariilor figurilor plane folosind o integrală definită

Folosind integrala, puteți calcula aria nu numai a trapezelor curbilinie, ci și a figurilor plane de tip mai complex, cum ar fi cea prezentată în figură. Figura P este mărginită de drepte x = a, x = b și grafice ale funcțiilor continue y = f(x), y = g(x), iar pe segmentul [a; b] inegalitatea \(g(x) \leq f(x) \) este valabilă. Pentru a calcula aria S a unei astfel de figuri, vom proceda după cum urmează:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

Deci, aria S a figurii mărginită de liniile drepte x = a, x = b și graficele funcțiilor y = f(x), y = g(x), continuă pe segment și astfel încât pentru orice x din segmentul [a; b] inegalitatea \(g(x) \leq f(x) \) este satisfăcută, se calculează prin formula
\(S = \int\limits_a^b (f(x)-g(x))dx \)

Tabel de integrale nedefinite (antiderivate) ale unor funcții

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n+1))(n+1 ) +C \;\; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch) )x+C $$

Exemplul 1 . Calculați aria figurii mărginite de linii: x + 2y - 4 = 0, y = 0, x = -3 și x = 2


Să construim o figură (vezi fig.) Construim o linie dreaptă x + 2y - 4 \u003d 0 de-a lungul a două puncte A (4; 0) și B (0; 2). Exprimând y în termeni de x, obținem y \u003d -0,5x + 2. Conform formulei (1), unde f (x) \u003d -0,5x + 2, a \u003d -3, b \u003d 2, vom găsi

S \u003d \u003d [-0,25 \u003d 11,25 mp. unitati

Exemplul 2 Calculați aria figurii mărginite de linii: x - 2y + 4 \u003d 0, x + y - 5 \u003d 0 și y \u003d 0.

Soluţie. Să construim o figură.

Să construim o dreaptă x - 2y + 4 = 0: y = 0, x = - 4, A (-4; 0); x = 0, y = 2, B(0; 2).

Să construim o dreaptă x + y - 5 = 0: y = 0, x = 5, С(5; 0), x = 0, y = 5, D(0; 5).

Aflați punctul de intersecție al dreptelor rezolvând sistemul de ecuații:

x = 2, y = 3; M(2; 3).

Pentru a calcula aria necesară, împărțim triunghiul AMC în două triunghiuri AMN și NMC, deoarece atunci când x se schimbă de la A la N, aria este limitată de o linie dreaptă, iar când x se schimbă de la N la C, este o linie dreaptă.


Pentru triunghiul AMN avem: ; y \u003d 0,5x + 2, adică f (x) \u003d 0,5x + 2, a \u003d - 4, b \u003d 2.

Pentru triunghiul NMC avem: y = - x + 5, adică f(x) = - x + 5, a = 2, b = 5.

Calculând aria fiecărui triunghi și adunând rezultatele, găsim:

mp unitati

mp unitati

9 + 4, 5 = 13,5 mp. unitati Verificați: = 0,5AC = 0,5 sq. unitati

Exemplul 3 Calculați aria unei figuri mărginite de drepte: y = x 2 , y = 0, x = 2, x = 3.

În acest caz, este necesar să se calculeze aria unui trapez curbiliniu mărginit de o parabolă y = x 2 , linii drepte x \u003d 2 și x \u003d 3 și axa Ox (a se vedea fig.) Conform formulei (1), găsim aria unui trapez curbiliniu


= = 6kv. unitati

Exemplul 4 Calculați aria unei figuri mărginite de drepte: y \u003d - x 2 + 4 și y = 0

Să construim o figură. Zona dorită este închisă între parabola y \u003d - x 2 + 4 și axa Oh.


Aflați punctele de intersecție ale parabolei cu axa x. Presupunând y \u003d 0, găsim x \u003d Deoarece această cifră este simetrică față de axa Oy, calculăm aria figurii situate în dreapta axei Oy și dublăm rezultatul: \u003d + 4x] pătrat. unitati 2 = 2 mp. unitati

Exemplul 5 Calculați aria unei figuri delimitate de drepte: y 2 = x, yx = 1, x = 4

Aici este necesar să se calculeze aria trapezului curbiliniu delimitată de ramura superioară a parabolei y 2 \u003d x, axa Ox și liniile drepte x \u003d 1x \u003d 4 (a se vedea fig.)


Conform formulei (1), unde f(x) = a = 1 și b = 4, avem = (= unități sq.

Exemplul 6 . Calculați aria figurii mărginite de drepte: y = sinx, y = 0, x = 0, x= .

Zona dorită este limitată de o sinusoidă cu jumătate de undă și de axa Ox (vezi Fig.).


Avem - cosx \u003d - cos \u003d 1 + 1 \u003d 2 metri pătrați. unitati

Exemplul 7 Calculați aria figurii delimitată de linii: y \u003d - 6x, y \u003d 0 și x \u003d 4.

Figura este situată sub axa Ox (vezi Fig.).

Prin urmare, aria sa este găsită prin formula (3)


= =

Exemplul 8 Calculați aria figurii delimitată de liniile: y \u003d și x \u003d 2. Vom construi curba y \u003d de puncte (a se vedea figura). Astfel, aria figurii se găsește prin formula (4)

Exemplul 9 .

X 2 + y 2 = r 2 .

Aici trebuie să calculați aria delimitată de cercul x 2 + y 2 = r 2 , adică aria unui cerc de rază r centrat la origine. Să găsim a patra parte a acestei zone, luând limitele integrării de la 0

dor; avem: 1 = = [

Prin urmare, 1 =

Exemplul 10 Calculați aria figurii mărginite de linii: y \u003d x 2 și y = 2x

Această cifră este limitată de parabola y \u003d x 2 și linie dreaptă y \u003d 2x (vezi Fig.) Pentru a determina punctele de intersecție ale dreptelor date, rezolvăm sistemul de ecuații: x 2 – 2x = 0 x = 0 și x = 2


Folosind formula (5) pentru a găsi aria, obținem

= }