Care este cel mai mic multiplu comun. Cum să găsiți cel mai mic multiplu comun al numerelor

Elevii primesc o mulțime de teme de matematică. Printre acestea, de foarte multe ori există sarcini cu următoarea formulare: există două valori. Cum să găsiți cel mai mic multiplu comun al numerelor date? Este necesar să puteți îndeplini astfel de sarcini, deoarece abilitățile dobândite sunt folosite pentru a lucra cu fracții când numitori diferiti. În articol, vom analiza cum să găsim LCM și conceptele de bază.

Înainte de a găsi răspunsul la întrebarea cum să găsiți LCM, trebuie să definiți termenul multiplu. Cel mai adesea, formularea acestui concept este următoarea: un multiplu al unei valori A este un număr natural care va fi divizibil cu A fără rest. Deci, pentru 4, 8, 12, 16, 20 și așa mai departe, până la limita cerută.

În acest caz, numărul de divizori pentru o anumită valoare poate fi limitat și există infiniti multipli. Există, de asemenea, aceeași valoare pentru valorile naturale. Acesta este un indicator care este împărțit de ei fără rest. După ce ne-am ocupat de conceptul de cea mai mică valoare pentru anumiți indicatori, să trecem la cum să o găsim.

Găsirea NOC

Cel mai mic multiplu de doi sau mai mulți exponenți este cel mai mic numar natural, care este complet divizibil cu toate numerele date.

Există mai multe modalități de a găsi o astfel de valoare. Să luăm în considerare următoarele metode:

  1. Dacă numerele sunt mici, atunci scrieți în linie toate divizibile cu ea. Continuați să faceți asta până când găsiți ceva în comun între ei. În înregistrare, ele sunt notate cu litera K. De exemplu, pentru 4 și 3, cel mai mic multiplu este 12.
  2. Dacă acestea sunt mari sau trebuie să găsiți un multiplu pentru 3 sau mai multe valori, atunci aici ar trebui să utilizați o tehnică diferită care implică descompunerea numerelor în factori primi. Mai întâi, așezați cel mai mare dintre cei indicați, apoi toate celelalte. Fiecare dintre ele are propriul său număr de multiplicatori. De exemplu, să descompunăm 20 (2*2*5) și 50 (5*5*2). Pentru cei mai mici dintre ei, subliniază factorii și adaugă la cei mai mari. Rezultatul va fi 100, care va fi cel mai mic multiplu comun al numerelor de mai sus.
  3. La găsirea a 3 numere (16, 24 și 36) principiile sunt aceleași ca și pentru celelalte două. Să extindem fiecare dintre ele: 16 = 2*2*2*2, 24=2*2*2*3, 36=2*2*3*3. Doar doi doi din descompunerea numărului 16 nu au fost incluse în extinderea celui mai mare.Le adunăm și obținem 144, care este cel mai mic rezultat pentru valorile numerice indicate anterior.

Acum știm care este tehnica generală pentru găsirea celei mai mici valori pentru două, trei sau mai multe valori. Cu toate acestea, există și metode private, ajutând la căutarea NOC-urilor, dacă cele anterioare nu ajută.

Cum să găsiți GCD și NOC.

Modalități private de a găsi

Ca și în cazul oricărei secțiuni matematice, există cazuri speciale de găsire a LCM-urilor care ajută în situații specifice:

  • dacă unul dintre numere este divizibil cu celelalte fără rest, atunci cel mai mic multiplu al acestor numere este egal cu acesta (NOC 60 și 15 este egal cu 15);
  • Numerele coprime nu au divizori primi comuni. Cea mai mică valoare a acestora este egală cu produsul acestor numere. Astfel, pentru numerele 7 și 8, acesta va fi 56;
  • aceeași regulă funcționează și pentru alte cazuri, inclusiv cele speciale, despre care se poate citi în literatura de specialitate. Aceasta ar trebui să includă și cazurile de descompunere a numerelor compuse, care fac obiectul unor articole separate și chiar al lucrărilor de doctorat.

Cazurile speciale sunt mai puțin frecvente decât exemplele standard. Dar datorită lor, puteți învăța cum să lucrați cu fracții de diferite grade de complexitate. Acest lucru este valabil mai ales pentru fracții., unde există numitori diferiți.

Cateva exemple

Să ne uităm la câteva exemple, datorită cărora puteți înțelege principiul găsirii celui mai mic multiplu:

  1. Găsim LCM (35; 40). Așezăm mai întâi 35 = 5*7, apoi 40 = 5*8. Adăugăm 8 la cel mai mic număr și obținem NOC 280.
  2. NOC (45; 54). Așezăm fiecare dintre ele: 45 = 3*3*5 și 54 = 3*3*6. Adăugăm numărul 6 la 45. Obținem NOC egal cu 270.
  3. Ei bine, ultimul exemplu. Există 5 și 4. Nu există multipli simpli pentru ei, așa că cel mai mic multiplu comun în acest caz va fi produsul lor, egal cu 20.

Datorită exemplelor, puteți înțelege cum este localizat NOC, care sunt nuanțele și care este sensul unor astfel de manipulări.

Găsirea NOC este mult mai ușoară decât ar părea la început. Pentru aceasta, se utilizează atât o simplă extindere, cât și multiplicarea valorilor simple una cu cealaltă.. Capacitatea de a lucra cu această secțiune de matematică ajută la studiul ulterioar al subiectelor matematice, în special al fracțiilor. grade diferite dificultăți.

Nu uitați să rezolvați periodic exemple cu diferite metode, acest lucru dezvoltă aparatul logic și vă permite să vă amintiți numeroși termeni. Învață metode pentru a găsi un astfel de indicator și vei putea lucra bine cu restul secțiunilor matematice. Învățare fericită la matematică!

Video

Acest videoclip vă va ajuta să înțelegeți și să vă amintiți cum să găsiți cel mai mic multiplu comun.

Calculatorul online vă permite să găsiți rapid cel mai mare divizor comunși cel mai mic multiplu comun atât al doi cât și al oricărui alt număr de numere.

Calculator pentru găsirea GCD și NOC

Găsiți GCD și NOC

GCD și NOC găsite: 5806

Cum se folosește calculatorul

  • Introduceți numere în câmpul de introducere
  • În cazul introducerii unor caractere incorecte, câmpul de introducere va fi evidențiat cu roșu
  • apăsați butonul „Găsiți GCD și NOC”

Cum se introduc numerele

  • Numerele sunt introduse separate prin spații, puncte sau virgule
  • Lungimea numerelor introduse nu este limitată, deci găsirea mcd și mcm al numerelor lungi nu va fi dificilă

Ce este NOD și NOK?

Cel mai mare divizor comun a mai multor numere este cel mai mare întreg natural prin care toate numerele originale sunt divizibile fără rest. Cel mai mare divizor comun este prescurtat ca GCD.
Cel mai mic multiplu comun mai multe numere este cel mai mic număr care este divizibil cu fiecare dintre numerele originale fără rest. Cel mai mic multiplu comun este prescurtat ca NOC.

Cum se verifică dacă un număr este divizibil cu un alt număr fără rest?

Pentru a afla dacă un număr este divizibil cu altul fără rest, puteți folosi unele proprietăți de divizibilitate a numerelor. Apoi, combinându-le, se poate verifica divizibilitatea după unele dintre ele și combinațiile lor.

Câteva semne de divizibilitate a numerelor

1. Semnul divizibilității unui număr cu 2
Pentru a determina dacă un număr este divizibil cu doi (dacă este par), este suficient să ne uităm la ultima cifră a acestui număr: dacă este egal cu 0, 2, 4, 6 sau 8, atunci numărul este par, ceea ce înseamnă că este divizibil cu 2.
Exemplu: determinați dacă numărul 34938 este divizibil cu 2.
Soluţie: uită-te la ultima cifră: 8 înseamnă că numărul este divizibil cu doi.

2. Semnul divizibilității unui număr cu 3
Un număr este divizibil cu 3 când suma cifrelor sale este divizibil cu 3. Astfel, pentru a determina dacă un număr este divizibil cu 3, trebuie să calculați suma cifrelor și să verificați dacă este divizibil cu 3. Chiar dacă suma cifrelor s-a dovedit a fi foarte mare, puteți repeta același proces din nou.
Exemplu: determinați dacă numărul 34938 este divizibil cu 3.
Soluţie: numărăm suma cifrelor: 3+4+9+3+8 = 27. 27 este divizibil cu 3, ceea ce înseamnă că numărul este divizibil cu trei.

3. Semnul divizibilității unui număr cu 5
Un număr este divizibil cu 5 când ultima lui cifră este zero sau cinci.
Exemplu: determinați dacă numărul 34938 este divizibil cu 5.
Soluţie: uită-te la ultima cifră: 8 înseamnă că numărul NU este divizibil cu cinci.

4. Semnul divizibilității unui număr cu 9
Acest semn este foarte asemănător cu semnul divizibilității cu trei: un număr este divizibil cu 9 când suma cifrelor sale este divizibil cu 9.
Exemplu: determinați dacă numărul 34938 este divizibil cu 9.
Soluţie: calculăm suma cifrelor: 3+4+9+3+8 = 27. 27 este divizibil cu 9, ceea ce înseamnă că numărul este divizibil cu nouă.

Cum să găsiți MCD și LCM a două numere

Cum să găsiți GCD-ul a două numere

Cel mai într-un mod simplu calcularea celui mai mare divizor comun a două numere este de a găsi toți divizorii posibili ai acelor numere și de a alege cel mai mare dintre ei.

Luați în considerare această metodă folosind exemplul de găsire a GCD(28, 36):

  1. Factorizăm ambele numere: 28 = 1 2 2 7 , 36 = 1 2 2 3 3
  2. Găsim factori comuni, adică cei pe care ambele numere îi au: 1, 2 și 2.
  3. Calculăm produsul acestor factori: 1 2 2 \u003d 4 - acesta este cel mai mare divizor comun al numerelor 28 și 36.

Cum se găsește LCM a două numere

Există două modalități cele mai comune de a găsi cel mai mic multiplu a două numere. Prima modalitate este că puteți scrie primii multipli ai două numere și apoi alegeți dintre ei un astfel de număr care va fi comun ambelor numere și, în același timp, cel mai mic. Și al doilea este să găsiți GCD-ul acestor numere. Să ne gândim doar la asta.

Pentru a calcula LCM, trebuie să calculați produsul numerelor originale și apoi să îl împărțiți la GCD găsit anterior. Să găsim LCM pentru aceleași numere 28 și 36:

  1. Aflați produsul numerelor 28 și 36: 28 36 = 1008
  2. gcd(28, 36) este deja cunoscut ca fiind 4
  3. LCM(28, 36) = 1008 / 4 = 252 .

Găsirea GCD și LCM pentru numere multiple

Cel mai mare divizor comun poate fi găsit pentru mai multe numere și nu doar pentru două. Pentru aceasta, numerele care trebuie găsite pentru cel mai mare divizor comun sunt descompuse în factori primi, apoi se găsește produsul factorilor primi comuni ai acestor numere. De asemenea, pentru a găsi GCD-ul mai multor numere, puteți utiliza următoarea relație: mcd(a, b, c) = mcd(mcd(a, b), c).

O relație similară se aplică și celui mai mic multiplu comun de numere: LCM(a, b, c) = LCM(LCM(a, b), c)

Exemplu: găsiți GCD și LCM pentru numerele 12, 32 și 36.

  1. Mai întâi, să factorizăm numerele: 12 = 1 2 2 3 , 32 = 1 2 2 2 2 2 , 36 = 1 2 2 3 3 .
  2. Să găsim factori comuni: 1, 2 și 2 .
  3. Produsul lor va da mcd: 1 2 2 = 4
  4. Acum să găsim LCM: pentru aceasta găsim mai întâi LCM(12, 32): 12 32 / 4 = 96 .
  5. Pentru a găsi LCM a tuturor celor trei numere, trebuie să găsiți MCD(96, 36): 96 = 1 2 2 2 2 2 3 , 36 = 1 2 2 3 3 , MCD = 1 2 . 2 3 = 12 .
  6. LCM(12, 32, 36) = 96 36 / 12 = 288 .

Un multiplu este un număr care este divizibil cu număr dat fără urmă. Cel mai mic multiplu comun (LCM) al unui grup de numere este cel mai mic număr care este divizibil egal cu fiecare număr din grup. Pentru a găsi cel mai mic multiplu comun, trebuie să găsiți factorii primi ai numerelor date. De asemenea, LCM poate fi calculat folosind o serie de alte metode care sunt aplicabile la grupuri de două sau mai multe numere.

Pași

O serie de multipli

    Uită-te la aceste numere. Metoda descrisă aici este utilizată cel mai bine atunci când sunt date două numere care sunt ambele mai mici de 10. Dacă sunt date numere mari, utilizați o metodă diferită.

    • De exemplu, găsiți cel mai mic multiplu comun al numerelor 5 și 8. Acestea sunt numere mici, așa că această metodă poate fi folosită.
  1. Un multiplu al unui număr este un număr care este divizibil cu un număr dat fără rest. Numerele multiple pot fi găsite în tabelul înmulțirii.

    • De exemplu, numerele care sunt multipli ai lui 5 sunt: ​​5, 10, 15, 20, 25, 30, 35, 40.
  2. Notează o serie de numere care sunt multipli ai primului număr. Faceți acest lucru sub multiplii primului număr pentru a compara două rânduri de numere.

    • De exemplu, numerele care sunt multipli ai lui 8 sunt: ​​8, 16, 24, 32, 40, 48, 56 și 64.
  3. Găsiți cel mai mic număr care apare în ambele serii de multipli. Poate fi necesar să scrieți serii lungi de multipli pentru a găsi totalul. Cel mai mic număr care apare în ambele serii de multipli este cel mai mic multiplu comun.

    • De exemplu, cel mai mic număr, care apare în seria multiplilor lui 5 și 8, este numărul 40. Prin urmare, 40 este cel mai mic multiplu comun al numerelor 5 și 8.

    factorizare primara

    1. Uită-te la aceste numere. Metoda descrisă aici este utilizată cel mai bine atunci când sunt date două numere care sunt ambele mai mari decât 10. Dacă sunt date numere mai mici, utilizați o metodă diferită.

      • De exemplu, găsiți cel mai mic multiplu comun al numerelor 20 și 84. Fiecare dintre numere este mai mare decât 10, așa că această metodă poate fi folosită.
    2. Factorizați primul număr. Adică, trebuie să găsiți astfel de numere prime, atunci când sunt multiplicate, obțineți un număr dat. După ce ați găsit factorii primi, notați-i ca o egalitate.

      • De exemplu, 2 × 10 = 20 (\displaystyle (\mathbf (2) )\times 10=20)și 2 × 5 = 10 (\displaystyle (\mathbf (2) )\times (\mathbf (5) )=10). Astfel, factorii primi ai numărului 20 sunt numerele 2, 2 și 5. Notează-i ca expresie: .
    3. Factorizați al doilea număr în factori primi. Faceți acest lucru în același mod în care ați factorizat primul număr, adică găsiți astfel de numere prime care, atunci când sunt înmulțite, vor obține acest număr.

      • De exemplu, 2 × 42 = 84 (\displaystyle (\mathbf (2) )\times 42=84), 7 × 6 = 42 (\displaystyle (\mathbf (7) )\times 6=42)și 3 × 2 = 6 (\displaystyle (\mathbf (3) )\times (\mathbf (2) )=6). Astfel, factorii primi ai numărului 84 ​​sunt numerele 2, 7, 3 și 2. Notează-le ca expresie: .
    4. Notați factorii comuni ambelor numere. Scrieți factori precum o operație de înmulțire. Pe măsură ce notați fiecare factor, tăiați-l în ambele expresii (expresii care descriu descompunerea numerelor în factori primi).

      • De exemplu, factorul comun pentru ambele numere este 2, așa că scrieți 2 × (\displaystyle 2\times )și tăiați 2 în ambele expresii.
      • Factorul comun pentru ambele numere este un alt factor de 2, așa că scrieți 2 × 2 (\displaystyle 2\times 2)și tăiați al doilea 2 în ambele expresii.
    5. Adăugați factorii rămași la operația de înmulțire. Aceștia sunt factori care nu sunt tăiați în ambele expresii, adică factori care nu sunt comuni ambelor numere.

      • De exemplu, în expresia 20 = 2 × 2 × 5 (\displaystyle 20=2\times 2\times 5) ambele două (2) sunt tăiate deoarece sunt factori comuni. Factorul 5 nu este tăiat, așa că scrieți operația de înmulțire după cum urmează: 2 × 2 × 5 (\displaystyle 2\times 2\times 5)
      • În expresie 84 = 2 × 7 × 3 × 2 (\displaystyle 84=2\times 7\times 3\times 2) ambele două (2) sunt de asemenea bilate. Factorii 7 și 3 nu sunt tăiați, așa că scrieți operația de înmulțire după cum urmează: 2 × 2 × 5 × 7 × 3 (\displaystyle 2\times 2\times 5\times 7\times 3).
    6. Calculați cel mai mic multiplu comun. Pentru a face acest lucru, înmulțiți numerele în operația de înmulțire scrisă.

      • De exemplu, 2 × 2 × 5 × 7 × 3 = 420 (\displaystyle 2\times 2\times 5\times 7\times 3=420). Deci cel mai mic multiplu comun al lui 20 și 84 este 420.

    Găsirea divizorilor comuni

    1. Desenați o grilă așa cum ați face pentru un joc de tic-tac-toe. O astfel de grilă constă din două linii paralele care se intersectează (în unghi drept) cu alte două linii paralele. Acest lucru va avea ca rezultat trei rânduri și trei coloane (grila seamănă foarte mult cu semnul #). Scrieți primul număr în primul rând și a doua coloană. Scrieți al doilea număr în primul rând și a treia coloană.

      • De exemplu, găsiți cel mai mic multiplu comun al lui 18 și 30. Scrieți 18 în primul rând și a doua coloană și scrieți 30 în primul rând și a treia coloană.
    2. Aflați divizorul comun ambelor numere. Notează-l pe primul rând și pe prima coloană. Este mai bine să cauți divizori primi, dar aceasta nu este o condiție prealabilă.

      • De exemplu, 18 și 30 sunt numere pare, deci divizorul lor comun este 2. Deci scrieți 2 în primul rând și prima coloană.
    3. Împărțiți fiecare număr la primul divizor. Scrieți fiecare coeficient sub numărul corespunzător. Coeficientul este rezultatul împărțirii a două numere.

      • De exemplu, 18 ÷ 2 = 9 (\displaystyle 18\div 2=9), deci scrie 9 sub 18.
      • 30 ÷ 2 = 15 (\displaystyle 30\div 2=15), deci scrie 15 sub 30.
    4. Găsiți un divizor comun ambilor coeficienti. Dacă nu există un astfel de divizor, săriți peste următorii doi pași. În caz contrar, notați divizorul în al doilea rând și prima coloană.

      • De exemplu, 9 și 15 sunt divizibile cu 3, așa că scrieți 3 în al doilea rând și în prima coloană.
    5. Împărțiți fiecare coeficient la al doilea divizor. Scrieți fiecare rezultat al împărțirii sub câtul corespunzător.

      • De exemplu, 9 ÷ 3 = 3 (\displaystyle 9\div 3=3), deci scrie 3 sub 9.
      • 15 ÷ 3 = 5 (\displaystyle 15\div 3=5), deci scrie 5 sub 15.
    6. Dacă este necesar, completați grila cu celule suplimentare. Repetați pașii de mai sus până când coeficientii au un divizor comun.

    7. Încercuiește numerele din prima coloană și ultimul rând al grilei. Apoi scrieți numerele evidențiate ca operație de înmulțire.

      • De exemplu, numerele 2 și 3 sunt în prima coloană, iar numerele 3 și 5 sunt în ultimul rând, așa că scrieți operația de înmulțire astfel: 2 × 3 × 3 × 5 (\displaystyle 2\times 3\times 3\times 5).
    8. Găsiți rezultatul înmulțirii numerelor. Aceasta va calcula cel mai mic multiplu comun al celor două numere date.

      • De exemplu, 2 × 3 × 3 × 5 = 90 (\displaystyle 2\times 3\times 3\times 5=90). Deci cel mai mic multiplu comun al lui 18 și 30 este 90.

    algoritmul lui Euclid

    1. Amintiți-vă terminologia asociată cu operația de divizare. Dividendul este numărul care este împărțit. Divizorul este numărul cu care se împarte. Coeficientul este rezultatul împărțirii a două numere. Restul este numărul rămas când două numere sunt împărțite.

      • De exemplu, în expresia 15 ÷ 6 = 2 (\displaystyle 15\div 6=2) odihnă. 3:
        15 este divizibilul
        6 este divizorul
        2 este privat
        3 este restul.

Cel mai mic multiplu comun a două numere este direct legat de cel mai mare divizor comun al acestor numere. Acest legătura dintre GCD și NOC este definită de următoarea teoremă.

Teorema.

Cel mai mic multiplu comun al două numere întregi pozitive a și b este egal cu produsul dintre a și b împărțit la cel mai mare divizor comun al lui a și b, adică LCM(a, b)=a b: MCM(a, b).

Dovada.

Lăsa M este un multiplu al numerelor a și b. Adică, M este divizibil cu a și, după definiția divizibilității, există un număr întreg k astfel încât egalitatea M=ak·k este adevărată. Dar M este și divizibil cu b, atunci a k ​​este divizibil cu b.

Notați mcd(a, b) ca d . Apoi putem nota egalitățile a=a 1 ·d și b=b 1 ·d, iar a 1 =a:d și b 1 =b:d vor fi numere coprime. Prin urmare, condiția obținută în paragraful anterior că a k este divizibil cu b poate fi reformulată astfel: a 1 d k este divizibil cu b 1 d , iar aceasta, datorită proprietăților divizibilității, este echivalentă cu condiția ca a 1 k este divizibil cu b unu .

De asemenea, trebuie să notăm două corolare importante din teorema considerată.

    Multiplii comuni ai două numere sunt la fel cu multiplii celui mai mic multiplu comun al acestora.

    Acest lucru este adevărat, deoarece orice multiplu comun al M numere a și b este definit de egalitatea M=LCM(a, b) t pentru o valoare întreagă t .

    Cel mai mic multiplu comun al numerelor coprime pozitive a și b este egal cu produsul lor.

    Motivul pentru acest fapt este destul de evident. Deoarece a și b sunt între prime, atunci mcd(a, b)=1, prin urmare, LCM(a, b)=a b: GCD(a, b)=a b:1=a b.

Cel mai mic multiplu comun de trei sau mai multe numere

Găsirea celui mai mic multiplu comun de trei sau mai multe numere poate fi redusă la găsirea succesivă a LCM a două numere. Cum se face acest lucru este indicat în următoarea teoremă: a 1 , a 2 , …, a k coincid cu multipli comuni ai numerelor m k-1 și a k ​​, prin urmare, coincid cu multiplii lui m k . Și deoarece cel mai mic multiplu pozitiv al numărului m k este numărul m k însuși, atunci cel mai mic multiplu comun al numerelor a 1 , a 2 , …, a k este m k .

Bibliografie.

  • Vilenkin N.Ya. etc Matematică. Clasa a VI-a: manual pentru instituțiile de învățământ.
  • Vinogradov I.M. Fundamentele teoriei numerelor.
  • Mihailovici Sh.Kh. Teoria numerelor.
  • Kulikov L.Ya. şi altele.Culegere de probleme de algebră şi teoria numerelor: Manual pentru studenţii de fiz.-mat. specialităţile institutelor pedagogice.

Materialul prezentat mai jos este o continuare logică a teoriei din articol la rubrica LCM - cel mai mic multiplu comun, definiție, exemple, relație dintre LCM și GCD. Aici vom vorbi despre găsirea celui mai mic multiplu comun (LCM), și Atentie speciala Să aruncăm o privire la exemple. Să arătăm mai întâi cum se calculează LCM a două numere în funcție de MCD-ul acestor numere. Apoi, luați în considerare găsirea celui mai mic multiplu comun prin factorizarea numerelor în factori primi. După aceea, ne vom concentra pe găsirea LCM a trei sau mai multe numere și, de asemenea, acordăm atenție calculului LCM a numerelor negative.

Navigare în pagină.

Calculul cel mai mic multiplu comun (LCM) prin mcd

O modalitate de a găsi cel mai mic multiplu comun se bazează pe relația dintre LCM și GCD. Relația existentă dintre LCM și GCD vă permite să calculați cel mai mic multiplu comun a două numere întregi pozitive prin cel mai mare divizor comun cunoscut. Formula corespunzătoare are forma LCM(a, b)=a b: MCM(a, b) . Luați în considerare exemple de găsire a LCM conform formulei de mai sus.

Exemplu.

Aflați cel mai mic multiplu comun al celor două numere 126 și 70.

Soluţie.

În acest exemplu a=126, b=70. Să folosim relația dintre LCM și GCD exprimată prin formula LCM(a, b)=a b: MCM(a, b). Adică, mai întâi trebuie să găsim cel mai mare divizor comun al numerelor 70 și 126, după care putem calcula LCM-ul acestor numere conform formulei scrise.

Găsiți mcd(126, 70) folosind algoritmul lui Euclid: 126=70 1+56 , 70=56 1+14 , 56=14 4 , deci mcd(126, 70)=14 .

Acum găsim cel mai mic multiplu comun necesar: LCM(126; 70)=126 70: MCM(126; 70)= 126 70:14=630.

Răspuns:

LCM(126, 70)=630.

Exemplu.

Ce este LCM(68, 34)?

Soluţie.

pentru că 68 este divizibil egal cu 34 , apoi mcd(68, 34)=34 . Acum calculăm cel mai mic multiplu comun: LCM(68, 34)=68 34: LCM(68, 34)= 68 34:34=68.

Răspuns:

LCM(68, 34)=68 .

Rețineți că exemplul anterior se potrivește cu următoarea regulă pentru găsirea LCM pentru numerele întregi pozitive a și b: dacă numărul a este divizibil cu b, atunci cel mai mic multiplu comun al acestor numere este a.

Găsirea LCM prin factorizarea numerelor în factori primi

O altă modalitate de a găsi cel mai mic multiplu comun se bazează pe factorizarea numerelor în factori primi. Dacă facem un produs al tuturor factorilor primi ai acestor numere, după care excludem din acest produs toți factorii primi comuni care sunt prezenți în expansiunile acestor numere, atunci produsul rezultat va fi egal cu cel mai mic multiplu comun al acestor numere.

Din egalitate rezultă regula anunțată pentru găsirea LCM LCM(a, b)=a b: MCM(a, b). Într-adevăr, produsul numerelor a și b este egal cu produsul tuturor factorilor implicați în expansiunile numerelor a și b. La rândul său, mcd(a, b) este egal cu produsul tuturor factorilor primi care sunt prezenți simultan în expansiunile numerelor a și b (care este descrisă în secțiunea despre găsirea mcd folosind descompunerea numerelor în factori primi). ).

Să luăm un exemplu. Să știm că 75=3 5 5 și 210=2 3 5 7 . Alcătuiți produsul tuturor factorilor acestor expansiuni: 2 3 3 5 5 5 7 . Acum excludem din acest produs toți factorii care sunt prezenți atât în ​​extinderea numărului 75, cât și în extinderea numărului 210 (acești factori sunt 3 și 5), atunci produsul va lua forma 2 3 5 5 7 . Valoarea acestui produs este egală cu cel mai mic multiplu comun al numerelor 75 și 210, adică LCM(75, 210)= 2 3 5 5 7=1 050.

Exemplu.

După descompunerea numerelor 441 și 700 în factori primi, găsește cel mai mic multiplu comun al acestor numere.

Soluţie.

Să descompunem numerele 441 și 700 în factori primi:

Se obține 441=3 3 7 7 și 700=2 2 5 5 7 .

Acum să facem un produs al tuturor factorilor implicați în expansiunile acestor numere: 2 2 3 3 5 5 7 7 7 . Să excludem din acest produs toți factorii care sunt prezenți simultan în ambele expansiuni (există un singur astfel de factor - acesta este numărul 7): 2 2 3 3 5 5 7 7 . În acest fel, LCM(441, 700)=2 2 3 3 5 5 7 7=44 100.

Răspuns:

LCM(441, 700)= 44 100 .

Regula pentru găsirea LCM folosind descompunerea numerelor în factori primi poate fi formulată puțin diferit. Dacă adunăm factorii lipsă din extinderea numărului b la factorii din extinderea numărului a, atunci valoarea produsului rezultat va fi egală cu cel mai mic multiplu comun al numerelor a și b..

De exemplu, să luăm aceleași numere 75 și 210, expansiunile lor în factori primi sunt după cum urmează: 75=3 5 5 și 210=2 3 5 7 . La factorii 3, 5 și 5 din descompunerea numărului 75, adăugăm factorii lipsă 2 și 7 din descompunerea numărului 210, obținem produsul 2 3 5 5 7 , a cărui valoare este LCM(75 , 210).

Exemplu.

Aflați cel mai mic multiplu comun al lui 84 ​​și 648.

Soluţie.

Obținem mai întâi descompunerea numerelor 84 și 648 în factori primi. Ele arată ca 84=2 2 3 7 și 648=2 2 2 3 3 3 3 . La factorii 2 , 2 , 3 și 7 din descompunerea numărului 84 ​​adăugăm factorii lipsă 2 , 3 , 3 și 3 din descompunerea numărului 648 , obținem produsul 2 2 2 3 3 3 3 7 , care este egal cu 4 536 . Astfel, cel mai mic multiplu comun dorit al numerelor 84 și 648 este 4.536.

Răspuns:

LCM(84, 648)=4 536 .

Găsirea LCM a trei sau mai multe numere

Cel mai mic multiplu comun de trei sau mai multe numere poate fi găsit prin găsirea succesivă a LCM a două numere. Amintiți-vă teorema corespunzătoare, care oferă o modalitate de a găsi LCM a trei sau mai multe numere.

Teorema.

Să fie date numere întregi numere pozitive a 1 , a 2 , …, a k , cel mai mic multiplu comun m k al acestor numere se găsește prin calcul secvențial m 2 = LCM (a 1 , a 2) , m 3 = LCM (m 2 , a 3) , …, m k = LCM ( m k−1 , a k) .

Luați în considerare aplicarea acestei teoreme pe exemplul găsirii celui mai mic multiplu comun al patru numere.

Exemplu.

Aflați LCM a celor patru numere 140 , 9 , 54 și 250 .

Soluţie.

În acest exemplu a 1 =140 , a 2 =9 , a 3 =54 , a 4 =250 .

Mai întâi găsim m 2 \u003d LCM (a 1, a 2) \u003d LCM (140, 9). Pentru a face acest lucru, folosind algoritmul euclidian, determinăm mcd(140, 9) , avem 140=9 15+5 , 9=5 1+4 , 5=4 1+1 , 4=1 4 , prin urmare, mcd( 140, 9)=1, de unde LCM(140, 9)=140 9: LCM(140, 9)= 140 9:1=1260. Adică m2 =1 260 .

Acum găsim m 3 \u003d LCM (m 2, a 3) \u003d LCM (1 260, 54). Să o calculăm prin mcd(1 260, 54) , care este determinată și de algoritmul Euclid: 1 260=54 23+18 , 54=18 3 . Atunci mcd(1 260, 54)=18 , de unde LCM(1 260, 54)= 1 260 54:gcd(1 260, 54)= 1 260 54:18=3 780 . Adică m 3 \u003d 3 780.

Rămas de găsit m 4 \u003d LCM (m 3, a 4) \u003d LCM (3 780, 250). Pentru a face acest lucru, găsim GCD(3 780, 250) folosind algoritmul Euclid: 3 780=250 15+30 , 250=30 8+10 , 30=10 3 . Prin urmare, mcd(3 780, 250)=10, de unde mcd(3 780, 250)= 3 780 250:gcd(3 780, 250)= 3 780 250:10=94 500 . Adică m 4 \u003d 94 500.

Deci cel mai mic multiplu comun al celor patru numere originale este 94.500.

Răspuns:

LCM(140, 9, 54, 250)=94.500.

În multe cazuri, cel mai mic multiplu comun de trei sau mai multe numere este găsit în mod convenabil utilizând descompunerea în factori primi a numerelor date. În acest caz, trebuie respectată următoarea regulă. Cel mai mic multiplu comun al mai multor numere este egal cu produsul, care se compune astfel: factorii lipsă din expansiunea celui de-al doilea număr se adaugă la toți factorii din extinderea primului număr, factorii lipsă din expansiunea primului număr. al treilea număr se adaugă factorilor obținuți și așa mai departe.

Luați în considerare un exemplu de găsire a celui mai mic multiplu comun folosind descompunerea numerelor în factori primi.

Exemplu.

Aflați cel mai mic multiplu comun al cinci numere 84 , 6 , 48 , 7 , 143 .

Soluţie.

Mai întâi, obținem expansiunile acestor numere în factori primi: 84=2 2 3 7 , 6=2 3 , 48=2 2 2 2 3 , 7 factori primi) și 143=11 13 .

Pentru a găsi LCM a acestor numere, la factorii primului număr 84 (sunt 2 , 2 , 3 și 7 ) trebuie să adăugați factorii lipsă din expansiunea celui de-al doilea număr 6 . Extinderea numărului 6 nu conține factori lipsă, deoarece atât 2, cât și 3 sunt deja prezenți în extinderea primului număr 84 . Pe lângă factorii 2 , 2 , 3 și 7 adăugăm factorii 2 și 2 lipsă din expansiunea celui de-al treilea număr 48 , obținem un set de factori 2 , 2 , 2 , 2 , 3 și 7 . Nu este nevoie să adăugați factori la acest set în pasul următor, deoarece 7 este deja conținut în el. În sfârșit, la factorii 2 , 2 , 2 , 2 , 3 și 7 adăugăm factorii 11 și 13 lipsă din expansiunea numărului 143 . Obținem produsul 2 2 2 2 3 7 11 13 , care este egal cu 48 048 .