Vzorec na nájdenie n čísla aritmetickej progresie. Aritmetická postupnosť - číselná postupnosť

Pri štúdiu algebry v všeobecnovzdelávacia škola(9. ročník) Jednou z dôležitých tém je štúdium číselných postupností, ktoré zahŕňajú postupnosti – geometrické a aritmetické. V tomto článku sa budeme zaoberať aritmetickým postupom a príkladmi s riešeniami.

Čo je to aritmetická progresia?

Aby sme to pochopili, je potrebné uviesť definíciu uvažovaného postupu, ako aj uviesť základné vzorce, ktoré sa budú ďalej používať pri riešení problémov.

Aritmetický alebo je taká množina usporiadaných racionálnych čísel, ktorých každý člen sa od predchádzajúceho líši nejakou konštantnou hodnotou. Táto hodnota sa nazýva rozdiel. To znamená, že ak poznáte ktoréhokoľvek člena zoradeného radu čísel a rozdiel, môžete obnoviť celý aritmetický postup.

Vezmime si príklad. Ďalšia postupnosť čísel bude aritmetický postup: 4, 8, 12, 16, ..., pretože rozdiel je v tomto prípade 4 (8 - 4 = 12 - 8 = 16 - 12). Ale množinu čísel 3, 5, 8, 12, 17 už nemožno priradiť k uvažovanému typu progresie, pretože rozdiel pre ňu nie je konštantná hodnota (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Dôležité vzorce

Teraz uvádzame základné vzorce, ktoré budú potrebné na riešenie problémov pomocou aritmetickej progresie. Označme symbolom a n n-tý člen sekvencie, kde n je celé číslo. Rozdiel je označený latinským písmenom d. Potom sú pravdivé nasledujúce výrazy:

  1. Na určenie hodnoty n-tého členu je vhodný vzorec: a n \u003d (n-1) * d + a 1.
  2. Na určenie súčtu prvých n členov: S n = (a n + a 1)*n/2.

Na pochopenie akýchkoľvek príkladov aritmetickej progresie s riešením v 9. ročníku si stačí zapamätať tieto dva vzorce, pretože všetky problémy daného typu sú postavené na ich použití. Tiež nezabudnite, že progresívny rozdiel je určený vzorcom: d = a n - a n-1 .

Príklad č. 1: Nájdenie neznámeho člena

Uvádzame jednoduchý príklad aritmetickej progresie a vzorcov, ktoré je potrebné použiť na riešenie.

Nech je daná postupnosť 10, 8, 6, 4, ..., treba v nej nájsť päť členov.

Už z podmienok problému vyplýva, že prvé 4 termíny sú známe. Piatu možno definovať dvoma spôsobmi:

  1. Najprv vypočítame rozdiel. Máme: d = 8 - 10 = -2. Podobne by sa dali vziať akékoľvek dva ďalšie výrazy stojace vedľa seba. Napríklad d = 4 - 6 = -2. Pretože je známe, že d \u003d a n - a n-1, potom d \u003d a 5 - a 4, odkiaľ dostaneme: a 5 \u003d a 4 + d. Dosadíme známe hodnoty: a 5 = 4 + (-2) = 2.
  2. Druhá metóda tiež vyžaduje znalosť rozdielu príslušnej progresie, takže ju najprv musíte určiť, ako je uvedené vyššie (d = -2). Keď vieme, že prvý člen a 1 = 10, použijeme vzorec pre n číslo postupnosti. Máme: a n \u003d (n - 1) * d + a 1 \u003d (n - 1) * (-2) + 10 \u003d 12 - 2 * n. Dosadením n = 5 do posledného výrazu dostaneme: a 5 = 12-2 * 5 = 2.

Ako vidíte, obe riešenia vedú k rovnakému výsledku. Všimnite si, že v tomto príklade je rozdiel d progresie záporný. Takéto postupnosti sa nazývajú klesajúce, pretože každý nasledujúci člen je menší ako predchádzajúci.

Príklad č. 2: rozdiel v postupe

Teraz si úlohu trochu skomplikujeme, uvedieme príklad, ako nájsť rozdiel aritmetickej progresie.

Je známe, že v niektorých algebraických postupnostiach sa 1. člen rovná 6 a 7. člen sa rovná 18. Je potrebné nájsť rozdiel a obnoviť túto postupnosť na 7. člen.

Na určenie neznámeho členu použijeme vzorec: a n = (n - 1) * d + a 1 . Dosadíme do nej známe údaje z podmienky, teda čísla a 1 a a 7, máme: 18 \u003d 6 + 6 * d. Z tohto výrazu ľahko vypočítate rozdiel: d = (18 - 6) / 6 = 2. Prvá časť úlohy bola teda zodpovedaná.

Ak chcete obnoviť postupnosť na 7. člen, mali by ste použiť definíciu algebraickej postupnosti, to znamená a 2 = a 1 + d, a 3 = a 2 + d atď. V dôsledku toho obnovíme celú postupnosť: a 1 = 6, a 2 = 6 + 2 = 8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 a 6 = 14 + 2 = 16 a 7 = 18.

Príklad č. 3: Progresia

Poďme si ešte viac skomplikovať stav problému. Teraz musíte odpovedať na otázku, ako nájsť aritmetickú progresiu. Môžeme uviesť nasledujúci príklad: sú dané dve čísla, napríklad 4 a 5. Je potrebné urobiť algebraickú postupnosť, aby sa medzi ne zmestili ďalšie tri členy.

Pred začatím riešenia tohto problému je potrebné pochopiť, aké miesto budú dané čísla zaujímať v budúcom postupe. Keďže medzi nimi budú ešte tri výrazy, potom 1 \u003d -4 a 5 \u003d 5. Po zistení pristúpime k úlohe, ktorá je podobná predchádzajúcej. Opäť, pre n-tý člen, použijeme vzorec, dostaneme: a 5 \u003d a 1 + 4 * d. Od: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2,25. Tu sme nedostali celočíselnú hodnotu rozdielu, ale je racionálne číslo, takže vzorce pre algebraickú postupnosť zostávajú rovnaké.

Teraz pripočítajme nájdený rozdiel k 1 a obnovíme chýbajúce členy progresie. Získame: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 \u003d 2,75 + 2,25 \u,0 ktorá sa zhodovala so stavom problému.

Príklad č. 4: Prvý člen postupu

Pokračujeme v uvádzaní príkladov aritmetickej progresie s riešením. Vo všetkých predchádzajúcich úlohách bolo známe prvé číslo algebraickej progresie. Teraz uvažujme úlohu iného typu: nech sú dané dve čísla, kde a 15 = 50 a a 43 = 37. Je potrebné zistiť, od ktorého čísla táto postupnosť začína.

Doteraz používané vzorce predpokladajú znalosť a 1 a d. V stave problému nie je o týchto číslach nič známe. Vypíšme si však výrazy pre každý výraz, o ktorom máme informácie: a 15 = a 1 + 14 * d a a 43 = a 1 + 42 * d. Dostali sme dve rovnice, v ktorých sú 2 neznáme veličiny (a 1 a d). To znamená, že problém je redukovaný na riešenie sústavy lineárnych rovníc.

Zadaný systém je najjednoduchšie vyriešiť, ak v každej rovnici vyjadríte 1 a potom porovnáte výsledné výrazy. Prvá rovnica: a 1 = a 15 - 14 * d = 50 - 14 * d; druhá rovnica: a 1 \u003d a 43 - 42 * d \u003d 37 - 42 * d. Porovnaním týchto výrazov dostaneme: 50 - 14 * d \u003d 37 - 42 * d, odkiaľ je rozdiel d \u003d (37 - 50) / (42 - 14) \u003d - 0,464 (uvedené sú iba 3 desatinné miesta).

Ak poznáte d, môžete použiť ktorýkoľvek z 2 vyššie uvedených výrazov pre 1 . Napríklad prvý: a 1 \u003d 50 - 14 * d \u003d 50 - 14 * (- 0,464) \u003d 56,496.

Ak sú o výsledku pochybnosti, môžete si ho skontrolovať, napríklad určiť 43. člen progresie, ktorý je uvedený v podmienke. Získame: a 43 \u003d a 1 + 42 * d \u003d 56,496 + 42 * (- 0,464) \u003d 37,008. Malá chyba je spôsobená tým, že pri výpočtoch bolo použité zaokrúhľovanie na tisíciny.

Príklad č. 5: Suma

Teraz sa pozrime na niekoľko príkladov s riešeniami súčtu aritmetickej progresie.

Nech je daný číselný postup v nasledujúcom tvare: 1, 2, 3, 4, ...,. Ako vypočítať súčet 100 z týchto čísel?

Vďaka rozvoju výpočtovej techniky je možné tento problém vyriešiť, to znamená postupne sčítať všetky čísla, čo počítač urobí hneď, ako človek stlačí kláves Enter. Problém sa však dá vyriešiť mentálne, ak si všimnete, že prezentovaný rad čísel je algebraická postupnosť a jej rozdiel je 1. Použitím vzorca pre súčet dostaneme: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Je zvláštne, že tento problém sa nazýva „gausovský“, keďže začiatkom 18. storočia ho slávny Nemec, ešte vo veku len 10 rokov, dokázal vyriešiť v mysli za pár sekúnd. Chlapec nepoznal vzorec pre súčet algebraickej postupnosti, ale všimol si, že ak sčítate dvojice čísel na okrajoch postupnosti, vždy dostanete rovnaký výsledok, teda 1 + 100 = 2 + 99 = 3 + 98 = ..., a keďže tieto súčty budú presne 50 (100 / 2), na získanie správnej odpovede stačí vynásobiť 50 číslom 101.

Príklad č. 6: súčet členov od n do m

Ďalší typický príklad súčtu aritmetickej progresie je nasledujúci: ak je daný rad čísel: 3, 7, 11, 15, ..., musíte zistiť, aký bude súčet jej členov od 8 do 14.

Problém sa rieši dvoma spôsobmi. Prvý z nich zahŕňa nájdenie neznámych výrazov od 8 do 14 a ich následné sčítanie. Keďže výrazov je málo, táto metóda nie je dostatočne prácna. Napriek tomu sa navrhuje riešiť tento problém druhou metódou, ktorá je univerzálnejšia.

Cieľom je získať vzorec pre súčet algebraickej postupnosti medzi členmi m a n, kde n > m sú celé čísla. Pre oba prípady napíšeme pre súčet dva výrazy:

  1. S m \u003d m * (a m + a 1) / 2.
  2. S n \u003d n * (a n + a 1) / 2.

Keďže n > m, je zrejmé, že súčet 2 zahŕňa aj prvý. Posledný záver znamená, že ak zoberieme rozdiel medzi týmito súčtami a pridáme k nemu člen a m (v prípade zobratia rozdielu sa odpočíta od súčtu S n), dostaneme potrebnú odpoveď na úlohu. Máme: S mn \u003d Sn - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m / 2). Do tohto výrazu je potrebné dosadiť vzorce pre a n a a m. Potom dostaneme: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m/2) = a 1* (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m2 - 2) / 2.

Výsledný vzorec je trochu ťažkopádny, avšak súčet S mn závisí len od n, m, a 1 a d. V našom prípade a 1 = 3, d = 4, n = 14, m = 8. Dosadením týchto čísel dostaneme: S mn = 301.

Ako vidno z vyššie uvedených riešení, všetky úlohy vychádzajú zo znalosti výrazu pre n-tý člen a vzorca pre súčet množiny prvých členov. Skôr ako začnete riešiť niektorý z týchto problémov, odporúča sa pozorne si prečítať podmienku, jasne pochopiť, čo chcete nájsť, a až potom pristúpiť k riešeniu.

Ďalším tipom je snažiť sa o jednoduchosť, to znamená, že ak dokážete odpovedať na otázku bez použitia zložitých matematických výpočtov, musíte to urobiť, pretože v tomto prípade je pravdepodobnosť, že urobíte chybu, menšia. Napríklad v príklade aritmetickej progresie s riešením č. 6 by sme sa mohli zastaviť pri vzorci S mn \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, a rozdeliť spoločná úloha do samostatných podproblémov (v tomto prípade najskôr nájdite pojmy a n a a m).

Ak existujú pochybnosti o výsledku, odporúča sa ho skontrolovať, ako to bolo urobené v niektorých uvedených príkladoch. Ako nájsť aritmetickú progresiu, zistilo sa. Keď na to prídete, nie je to také ťažké.


Áno áno: aritmetická progresia- to nie sú hračky pre teba :)

Priatelia, ak čítate tento text, potom mi vnútorný uzáver hovorí, že stále neviete, čo je to aritmetická progresia, ale naozaj to (nie, takto: SOOOOO!) chcete vedieť. Nebudem vás preto mučiť dlhými úvodmi a hneď sa pustím do veci.

Na začiatok pár príkladov. Zvážte niekoľko sád čísel:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Čo majú všetky tieto súpravy spoločné? Na prvý pohľad nič. Ale v skutočnosti tam niečo je. menovite: každý nasledujúci prvok sa líši od predchádzajúceho o rovnaké číslo.

Veď posúďte sami. Prvá množina sú len po sebe idúce čísla, každé je viac ako predchádzajúce. V druhom prípade je rozdiel medzi stojace čísla sa už rovná piatim, ale tento rozdiel je stále konštantný. V treťom prípade existujú korene vo všeobecnosti. Avšak $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, kým $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, t.j. v takom prípade sa každý ďalší prvok jednoducho zvýši o $\sqrt(2)$ (a nezľaknite sa, že toto číslo je iracionálne).

Takže: všetky takéto postupnosti sa nazývajú aritmetické postupnosti. Dajme presnú definíciu:

Definícia. Postupnosť čísel, v ktorých sa každé nasledujúce líši od predchádzajúceho presne o rovnakú hodnotu, sa nazýva aritmetická postupnosť. Samotná suma, o ktorú sa čísla líšia, sa nazýva progresívny rozdiel a najčastejšie sa označuje písmenom $d$.

Zápis: $\left(((a)_(n)) \right)$ je samotný priebeh, $d$ je jeho rozdiel.

A len pár dôležitých poznámok. Po prvé, berie sa do úvahy iba progresia usporiadaný poradie čísel: môžu sa čítať striktne v poradí, v akom sú napísané - a nič iné. Čísla nemôžete preusporiadať ani vymeniť.

Po druhé, samotná postupnosť môže byť buď konečná alebo nekonečná. Napríklad množina (1; 2; 3) je zjavne konečná aritmetická postupnosť. Ale ak napíšete niečo ako (1; 2; 3; 4; ...) - to je už nekonečný postup. Elipsa za štvorkou, ako to bolo, naznačuje, že pomerne veľa čísel ide ďalej. Napríklad nekonečne veľa. :)

Chcel by som tiež poznamenať, že pokroky sa zvyšujú a znižujú. Už sme videli pribúdajúce - rovnakú množinu (1; 2; 3; 4; ...). Tu sú príklady klesajúcej progresie:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Dobre, dobre: ​​posledný príklad sa môže zdať príliš komplikovaný. Ale zvyšok, myslím, chápeš. Preto uvádzame nové definície:

Definícia. Aritmetický postup sa nazýva:

  1. zvýšenie, ak je každý ďalší prvok väčší ako predchádzajúci;
  2. klesajúci, ak je naopak každý nasledujúci prvok menší ako predchádzajúci.

Okrem toho existujú takzvané "stacionárne" sekvencie - pozostávajú z rovnakého opakujúceho sa čísla. Napríklad (3; 3; 3; ...).

Zostáva len jedna otázka: ako rozlíšiť rastúcu progresiu od klesajúcej? Našťastie tu všetko závisí len od znamienka čísla $d$, t.j. rozdiely v postupe:

  1. Ak $d \gt 0$, potom sa progresia zvyšuje;
  2. Ak $d \lt 0$, potom progresia zjavne klesá;
  3. Nakoniec je tu prípad $d=0$ — v tomto prípade je celá postupnosť redukovaná na stacionárnu postupnosť rovnakých čísel: (1; 1; 1; 1; ...) atď.

Skúsme vypočítať rozdiel $d$ pre tri klesajúce priebehy vyššie. Na tento účel stačí vziať ľubovoľné dva susedné prvky (napríklad prvý a druhý) a odpočítať od čísla vpravo číslo vľavo. Bude to vyzerať takto:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Ako vidíte, vo všetkých troch prípadoch sa rozdiel skutočne ukázal ako negatívny. A teraz, keď sme už viac-menej prišli na definície, je čas zistiť, ako sa popisujú progresie a aké vlastnosti majú.

Členovia progresie a opakujúceho sa vzorca

Keďže prvky našich sekvencií nie je možné zamieňať, možno ich očíslovať:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \správny\)\]

Jednotlivé prvky tohto súboru sa nazývajú členovia progresie. Označujú sa týmto spôsobom pomocou čísla: prvý člen, druhý člen atď.

Okrem toho, ako už vieme, susedné členy progresie súvisia podľa vzorca:

\[((a)_(n))-((a)_(n-1))=d\Šípka doprava ((a)_(n))=((a)_(n-1))+d \]

Stručne povedané, aby ste našli $n$-tý člen progresie, musíte poznať $n-1$-tý člen a rozdiel $d$. Takýto vzorec sa nazýva rekurentný, pretože s jeho pomocou môžete nájsť ľubovoľné číslo, iba ak poznáte predchádzajúce (a v skutočnosti všetky predchádzajúce). To je veľmi nepohodlné, takže existuje zložitejší vzorec, ktorý redukuje akýkoľvek výpočet na prvý výraz a rozdiel:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

S týmto vzorcom ste sa už určite stretli. Radi to dávajú vo všetkých druhoch referenčných kníh a reshebnikov. A v každej rozumnej učebnici matematiky je jednou z prvých.

Odporúčam vám však trochu trénovať.

Úloha číslo 1. Napíšte prvé tri členy aritmetickej postupnosti $\left(((a)_(n)) \right)$, ak $((a)_(1))=8,d=-5$.

Riešenie. Poznáme teda prvý člen $((a)_(1))=8$ a progresívny rozdiel $d=-5$. Použime práve daný vzorec a nahraďme $n=1$, $n=2$ a $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(zarovnať)\]

Odpoveď: (8; 3; -2)

To je všetko! Všimnite si, že naša progresia klesá.

Samozrejme, $n=1$ sa nedalo nahradiť – prvý výraz už poznáme. Nahradením jednotky sme sa však uistili, že aj na prvý termín náš vzorec funguje. V iných prípadoch všetko padlo na banálnu aritmetiku.

Úloha číslo 2. Napíšte prvé tri členy aritmetickej postupnosti, ak jej siedmy člen je -40 a jej sedemnásty člen je -50.

Riešenie. Stav problému napíšeme obvyklými výrazmi:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(zarovnať) \vpravo.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \správny.\]

Označil som systém, pretože tieto požiadavky musia byť splnené súčasne. A teraz si všimnime, že ak odpočítame prvú rovnicu od druhej rovnice (máme na to právo, pretože máme systém), dostaneme toto:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(zarovnať)\]

Len tak sme našli rozdiel v postupe! Zostáva nahradiť nájdené číslo v ktorejkoľvek z rovníc systému. Napríklad v prvom:

\[\begin(matica) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matica)\]

Teraz, keď poznáme prvý výraz a rozdiel, zostáva nájsť druhý a tretí výraz:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(zarovnať)\]

Pripravený! Problém je vyriešený.

Odpoveď: (-34; -35; -36)

Venujte pozornosť zvláštnej vlastnosti progresie, ktorú sme objavili: ak vezmeme $n$-tý a $m$-tý člen a odčítame ich od seba, potom dostaneme rozdiel progresie vynásobený číslom $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Jednoduché ale veľmi užitočný majetok, ktorý určite potrebujete vedieť - s jeho pomocou môžete výrazne urýchliť riešenie mnohých problémov v postupoch. Tu je ukážkový príklad:

Úloha číslo 3. Piaty člen aritmetického postupu je 8,4 a jeho desiaty člen je 14,4. Nájdite pätnásty termín tohto postupu.

Riešenie. Keďže $((a)_(5))=8,4$, $((a)_(10))=14,4$ a musíme nájsť $((a)_(15)))$, všimneme si nasledovné:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(zarovnať)\]

Ale podľa podmienky $((a)_(10))-((a)_(5))=14,4-8,4=6$, takže $5d=6$, odkiaľ máme:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(zarovnať)\]

Odpoveď: 20.4

To je všetko! Nepotrebovali sme skladať žiadne sústavy rovníc a počítať prvý člen a rozdiel – o všetkom sa rozhodlo v niekoľkých riadkoch.

Teraz zvážme iný typ problému - hľadanie negatívnych a pozitívnych členov progresie. Nie je žiadnym tajomstvom, že ak sa progresia zvyšuje, pričom jej prvý termín je negatívny, potom sa v ňom skôr či neskôr objavia pozitívne termíny. A naopak: podmienky klesajúcej progresie sa skôr či neskôr stanú negatívnymi.

Zároveň nie je vždy možné nájsť tento moment „na čele“, ktorý postupne triedi prvky. Často sú problémy navrhnuté tak, že bez znalosti vzorcov by výpočty zabrali niekoľko listov – jednoducho by sme zaspali, kým by sme našli odpoveď. Preto sa pokúsime tieto problémy vyriešiť rýchlejšie.

Úloha číslo 4. Koľko záporných členov v aritmetickej progresii -38,5; -35,8; …?

Riešenie. Takže $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, z čoho okamžite nájdeme rozdiel:

Všimnite si, že rozdiel je pozitívny, takže progresia sa zvyšuje. Prvý člen je záporný, takže v určitom bode skutočne narazíme na kladné čísla. Jedinou otázkou je, kedy sa tak stane.

Skúsme zistiť: ako dlho (t. j. do akého prirodzeného čísla $n$) sa zachová negativita pojmov:

\[\začiatok(zarovnanie) & ((a)_(n)) \lt 0\šípka doprava ((a)_(1))+\vľavo(n-1 \vpravo)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \vpravo. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\šípka doprava ((n)_(\max ))=15. \\ \end(zarovnať)\]

Posledný riadok potrebuje objasnenie. Takže vieme, že $n \lt 15\frac(7)(27)$. Na druhej strane nám budú vyhovovať iba celočíselné hodnoty čísla (navyše: $n\in \mathbb(N)$), takže najväčšie prípustné číslo je presne $n=15$ a v žiadnom prípade nie 16.

Úloha číslo 5. V aritmetickom postupe $(()_(5))=-150,(()_(6))=-147$. Nájdite číslo prvého kladného termínu tejto progresie.

Bol by to presne ten istý problém ako ten predchádzajúci, ale nevieme $((a)_(1))$. Ale susedné výrazy sú známe: $((a)_(5))$ a $((a)_(6))$, takže môžeme ľahko nájsť rozdiel v postupe:

Okrem toho sa pokúsme vyjadriť piaty člen z hľadiska prvého a rozdielu pomocou štandardného vzorca:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(zarovnať)\]

Teraz postupujeme analogicky s predchádzajúcim problémom. Zisťujeme, v ktorom bode v našej sekvencii sa objavia kladné čísla:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\šípka doprava ((n)_(\min ))=56. \\ \end(zarovnať)\]

Minimálne celočíselné riešenie tejto nerovnosti je číslo 56.

Upozorňujeme, že v poslednej úlohe bolo všetko zredukované na striktnú nerovnosť, takže možnosť $n=55$ nám nebude vyhovovať.

Teraz, keď sme sa naučili riešiť jednoduché problémy, prejdime k zložitejším. Najprv sa však naučíme ďalšiu veľmi užitočnú vlastnosť aritmetických postupností, ktorá nám v budúcnosti ušetrí veľa času a nerovnakých buniek. :)

Aritmetický priemer a rovnaké zarážky

Zvážte niekoľko po sebe idúcich členov rastúcej aritmetickej progresie $\left(((a)_(n)) \right)$. Skúsme ich označiť na číselnej osi:

Členovia aritmetického postupu na číselnej osi

Konkrétne som si všimol ľubovoľných členov $((a)_(n-3)),...,((a)_(n+3))$, a nie žiadne $((a)_(1)) , \ ((a)_(2)),\ ((a)_(3))$ atď. Pretože pravidlo, ktoré vám teraz poviem, funguje rovnako pre akékoľvek „segmenty“.

A pravidlo je veľmi jednoduché. Zapamätajme si rekurzívny vzorec a zapíšme si ho pre všetky označené členy:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(zarovnať)\]

Tieto rovnosti však možno prepísať inak:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(zarovnať)\]

No a čo? Ale skutočnosť, že výrazy $((a)_(n-1))$ a $((a)_(n+1)))$ ležia v rovnakej vzdialenosti od $((a)_(n)) $ . A táto vzdialenosť sa rovná $d$. To isté možno povedať o výrazoch $((a)_(n-2))$ a $((a)_(n+2))$ – sú tiež odstránené z $((a)_(n) )$ o rovnakú vzdialenosť rovnajúcu sa $2d$. Môžete pokračovať donekonečna, ale obrázok dobre ilustruje význam


Členovia progresie ležia v rovnakej vzdialenosti od stredu

Čo to pre nás znamená? To znamená, že môžete nájsť $((a)_(n))$, ak sú susedné čísla známe:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Vydedukovali sme veľkolepé tvrdenie: každý člen aritmetického postupu sa rovná aritmetickému priemeru susedných členov! Okrem toho sa môžeme odchýliť od nášho $((a)_(n))$ doľava a doprava nie o jeden krok, ale o $k$ krokov – a aj tak bude vzorec správny:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Tie. môžeme ľahko nájsť nejaké $((a)_(150))$, ak poznáme $((a)_(100))$ a $((a)_(200))$, pretože $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Na prvý pohľad sa môže zdať, že táto skutočnosť nám nedáva nič užitočné. V praxi je však veľa úloh špeciálne „vybrúsených“ na použitie aritmetického priemeru. Pozri sa:

Úloha číslo 6. Nájdite všetky hodnoty $x$ tak, že čísla $-6(x)^(2))$, $x+1$ a $14+4((x)^(2))$ sú po sebe idúce členy aritmetický postup (v určenom poradí).

Riešenie. Keďže tieto čísla sú členmi progresie, je pre ne splnená podmienka aritmetického priemeru: centrálny prvok $x+1$ možno vyjadriť pomocou susedných prvkov:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(zarovnať)\]

Ukázalo sa to klasicky kvadratická rovnica. Jeho korene: $x=2$ a $x=-3$ sú odpovede.

Odpoveď: -3; 2.

Úloha číslo 7. Nájdite hodnoty $$ tak, aby čísla $-1;4-3;(()^(2))+1$ tvorili aritmetickú postupnosť (v tomto poradí).

Riešenie. Opäť vyjadrujeme stredný člen z hľadiska aritmetického priemeru susedných členov:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\vpravo.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(zarovnať)\]

Ďalšia kvadratická rovnica. A opäť dva korene: $x=6$ a $x=1$.

Odpoveď: 1; 6.

Ak v procese riešenia problému dostanete nejaké brutálne čísla alebo si nie ste úplne istí správnosťou nájdených odpovedí, potom existuje skvelý trik, ktorý vám umožní skontrolovať: vyriešili sme problém správne?

Povedzme, že v úlohe 6 sme dostali odpovede -3 a 2. Ako môžeme skontrolovať, či sú tieto odpovede správne? Zapojme ich do pôvodného stavu a uvidíme, čo sa stane. Dovoľte mi pripomenúť, že máme tri čísla ($-6(()^(2))$, $+1$ a $14+4(()^(2))$), ktoré by mali tvoriť aritmetickú postupnosť. Nahradiť $x=-3$:

\[\začiatok(zarovnanie) & x=-3\šípka doprava \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Dostali sme čísla -54; -2; 50, ktoré sa líšia o 52, je nepochybne aritmetický postup. To isté sa stane pre $ x = 2 $:

\[\začiatok(zarovnanie) & x=2\šípka doprava \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Opäť postup, ale s rozdielom 27. Úloha je teda vyriešená správne. Tí, ktorí chcú, môžu sami skontrolovať druhú úlohu, ale hneď poviem: aj tam je všetko správne.

Vo všeobecnosti sme pri riešení posledných úloh narazili na ďalšiu zaujímavý fakt, čo je tiež potrebné pripomenúť:

Ak sú tri čísla také, že druhé je priemerom prvého a posledného, ​​potom tieto čísla tvoria aritmetickú postupnosť.

Pochopenie tohto tvrdenia nám v budúcnosti umožní doslova „konštruovať“ potrebné postupy na základe stavu problému. No skôr, než sa pustíme do takejto „stavby“, mali by sme venovať pozornosť ešte jednej skutočnosti, ktorá priamo vyplýva z už uvažovaného.

Zoskupovanie a súčet prvkov

Vráťme sa opäť k číselnému radu. Zaznamenávame tam niekoľko členov progresie, medzi ktorými sa možno. stojí za veľa ďalších členov:

6 prvkov vyznačených na číselnom rade

Skúsme vyjadriť „ľavý chvost“ pomocou $((a)_(n))$ a $d$ a „pravý chvost“ pomocou $((a)_(k))$ a $ d$. Je to veľmi jednoduché:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(zarovnať)\]

Teraz si všimnite, že nasledujúce sumy sú rovnaké:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Zjednodušene povedané, ak za začiatok považujeme dva prvky postupu, ktoré sa v súčte rovnajú nejakému číslu $S$, a potom začneme od týchto prvkov vykračovať opačným smerom (k sebe alebo naopak, aby sme sa vzdialili), potom súčty prvkov, o ktoré zakopneme, budú tiež rovnaké$ S$. Najlepšie sa to dá znázorniť graficky:


Rovnaké zarážky dávajú rovnaké súčty

Pochopenie tejto skutočnosti nám umožní riešiť problémy zásadne vyššej úrovne zložitosti ako tie, ktoré sme uvažovali vyššie. Napríklad tieto:

Úloha číslo 8. Určte rozdiel aritmetickej postupnosti, v ktorej je prvý člen 66 a súčin druhého a dvanásteho člena je najmenší možný.

Riešenie. Zapíšme si všetko, čo vieme:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min. \end(align)\]

Takže nepoznáme rozdiel v progresii $d$. V skutočnosti bude celé riešenie postavené na tomto rozdiele, pretože produkt $((a)_(2))\cdot ((a)_(12))$ možno prepísať takto:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Pre tých v nádrži: Vybral som spoločný faktor 11 z druhej zátvorky. Požadovaný súčin je teda kvadratická funkcia vzhľadom na premennú $d$. Zvážte preto funkciu $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - jej graf bude parabola s vetvami nahor, pretože ak otvoríme zátvorky, dostaneme:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Ako vidíte, koeficient v najvyššom termíne je 11 - to je kladné číslo, takže naozaj máme do činenia s parabolou s vetvami nahor:


harmonogram kvadratickej funkcie- parabola

Poznámka: táto parabola má svoju minimálnu hodnotu vo svojom vrchole s osou $((d)_(0))$. Samozrejme, môžeme túto úsečku vypočítať podľa štandardnej schémy (existuje vzorec $((d)_(0))=(-b)/(2a)\;$), ale bolo by oveľa rozumnejšie všimnite si, že požadovaný vrchol leží na osovej symetrii paraboly, takže bod $((d)_(0))$ je rovnako vzdialený od koreňov rovnice $f\left(d \right)=0$:

\[\začiatok(zarovnanie) & f\vľavo(d\vpravo)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(zarovnať)\]

Preto som sa s otváraním zátvoriek neponáhľal: v pôvodnej podobe sa korene dali veľmi, veľmi ľahko nájsť. Preto sa úsečka rovná aritmetickému priemeru čísel -66 a -6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Čo nám dáva objavené číslo? S ním požadovaný produkt nadobúda najmenšiu hodnotu (mimochodom, nepočítali sme $((y)_(\min ))$ - to sa od nás nevyžaduje). Toto číslo je zároveň rozdielom počiatočnej progresie, t.j. našli sme odpoveď. :)

Odpoveď: -36

Úloha číslo 9. Medzi čísla $-\frac(1)(2)$ a $-\frac(1)(6)$ vložte tri čísla tak, aby spolu s danými číslami tvorili aritmetickú postupnosť.

Riešenie. V skutočnosti musíme vytvoriť postupnosť piatich čísel, pričom prvé a posledné číslo je už známe. Chýbajúce čísla označte premennými $x$, $y$ a $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Všimnite si, že číslo $y$ je "stredom" našej postupnosti - je rovnako vzdialené od čísel $x$ a $z$ a od čísel $-\frac(1)(2)$ a $-\frac (1) (6) $. A ak z čísel $x$ a $z$ sme v tento moment nemôžeme dostať $y$, potom je situácia iná s koncami progresie. Pamätajte na aritmetický priemer:

Teraz, keď poznáme $y$, nájdeme zvyšné čísla. Všimnite si, že $x$ leží medzi $-\frac(1)(2)$ a $y=-\frac(1)(3)$ práve nájdeným. Preto

Argumentujúc podobne, nájdeme zostávajúce číslo:

Pripravený! Našli sme všetky tri čísla. Zapíšme si ich do odpovede v poradí, v akom majú byť vložené medzi pôvodné čísla.

Odpoveď: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Úloha číslo 10. Medzi čísla 2 a 42 vložte niekoľko čísel, ktoré spolu s danými číslami tvoria aritmetickú postupnosť, ak je známe, že súčet prvého, druhého a posledného vloženého čísla je 56.

Riešenie. Ešte náročnejšia úloha, ktorá sa však rieši rovnako ako tie predchádzajúce – aritmetickým priemerom. Problém je v tom, že nevieme presne koľko čísel vložiť. Preto pre istotu predpokladáme, že po vložení bude presne $n$ čísel a prvé z nich je 2 a posledné je 42. V tomto prípade môže byť požadovaný aritmetický postup reprezentovaný ako:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \vpravo\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Všimnite si však, že čísla $((a)_(2))$ a $((a)_(n-1))$ sú získané z čísel 2 a 42 stojacich na okrajoch o krok k sebe. , t.j. do stredu sekvencie. A to znamená, že

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ale vyššie uvedený výraz môže byť prepísaný takto:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(zarovnať)\]

Keď poznáme $((a)_(3))$ a $((a)_(1))$, môžeme ľahko nájsť rozdiel v postupe:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\šípka doprava d=5. \\ \end(zarovnať)\]

Zostáva len nájsť zvyšných členov:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(zarovnať)\]

Už v 9. kroku sa teda dostaneme na ľavý koniec postupnosti - číslo 42. Celkovo bolo treba vložiť len 7 čísel: 7; 12; 17; 22; 27; 32; 37.

Odpoveď: 7; 12; 17; 22; 27; 32; 37

Textové úlohy s postupmi

Na záver by som rád zvážil niekoľko relatívne jednoduchých problémov. No, jednoducho: pre väčšinu študentov, ktorí študujú matematiku v škole a nečítali, čo je napísané vyššie, môžu tieto úlohy pôsobiť ako gesto. Práve s takýmito úlohami sa však stretávame v OGE a USE v matematike, preto vám odporúčam, aby ste sa s nimi oboznámili.

Úloha číslo 11. Tím v januári vyrobil 62 dielov a v každom nasledujúcom mesiaci vyrobili o 14 dielov viac ako v predchádzajúcom. Koľko dielov vyrobila brigáda v novembri?

Riešenie. Je zrejmé, že počet dielov, maľovaných podľa mesiacov, bude stúpať aritmetickým postupom. a:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

November je 11. mesiac v roku, takže musíme nájsť $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

V novembri sa teda vyrobí 202 dielov.

Úloha číslo 12. Kníhviazačská dielňa zviazala v januári 216 kníh a každý mesiac zviazala o 4 knihy viac ako predchádzajúci mesiac. Koľko kníh zviazal workshop v decembri?

Riešenie. Všetky rovnaké:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

December je posledný, 12. mesiac v roku, takže hľadáme $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Toto je odpoveď – v decembri bude zviazaných 260 kníh.

Ak ste sa dočítali až sem, ponáhľam sa vám zablahoželať: úspešne ste dokončili „kurz mladého bojovníka“ v aritmetických postupoch. Pokojne môžeme prejsť na ďalšiu lekciu, kde si preštudujeme vzorec súčtu postupu, ako aj dôležité a veľmi užitočné dôsledky z neho.

Alebo aritmetika - ide o typ usporiadanej číselnej postupnosti, ktorej vlastnosti sa študujú v školskom kurze algebry. Tento článok podrobne rozoberá otázku, ako nájsť súčet aritmetickej progresie.

Čo je to za progresiu?

Predtým, ako pristúpime k zváženiu otázky (ako nájsť súčet aritmetickej progresie), stojí za to pochopiť, o čom sa bude diskutovať.

Akákoľvek postupnosť reálnych čísel, ktorá sa získa pripočítaním (odčítaním) nejakej hodnoty od každého predchádzajúceho čísla, sa nazýva algebraická (aritmetická) postupnosť. Táto definícia, preložená do jazyka matematiky, má podobu:

Tu i je poradové číslo prvku radu a i . Ak teda poznáte iba jedno počiatočné číslo, môžete ľahko obnoviť celú sériu. Parameter d vo vzorci sa nazýva progresívny rozdiel.

Dá sa ľahko ukázať, že pre uvažovaný rad čísel platí nasledujúca rovnosť:

a n \u003d a 1 + d * (n - 1).

To znamená, že ak chcete nájsť hodnotu n-tého prvku v poradí, pridajte rozdiel d k prvému prvku a 1 n-1 krát.

Aký je súčet aritmetickej progresie: vzorec

Pred uvedením vzorca pre uvedené množstvo je potrebné zvážiť jednoduchý špeciálny prípad. Dana progresia prirodzené čísla od 1 do 10, musíte nájsť ich súčet. Keďže v postupnosti je málo pojmov (10), je možné problém vyriešiť priamočiaro, teda sčítať všetky prvky v poradí.

S 10 \u003d 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 \u003d 55.

Stojí za to zvážiť jednu zaujímavú vec: keďže každý výraz sa líši od nasledujúceho o rovnakú hodnotu d \u003d 1, potom párový súčet prvého s desiatym, druhého s deviatym atď. poskytne rovnaký výsledok. . naozaj:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Ako vidíte, týchto súčtov je len 5, teda presne dvakrát menej ako je počet prvkov v rade. Potom vynásobením počtu súčtov (5) výsledkom každého súčtu (11) sa dostanete k výsledku získanému v prvom príklade.

Ak tieto argumenty zovšeobecníme, môžeme napísať nasledujúci výraz:

S n \u003d n * (a 1 + a n) / 2.

Tento výraz ukazuje, že vôbec nie je potrebné sčítať všetky prvky za sebou, stačí poznať hodnotu prvého a 1 a posledného a n , a tiež celkový počet termíny č.

Predpokladá sa, že Gauss prvýkrát premýšľal o tejto rovnosti, keď hľadal riešenie problému stanoveného jeho učiteľom v škole: sčítať prvých 100 celých čísel.

Súčet prvkov od m do n: vzorec

Vzorec uvedený v predchádzajúcom odseku odpovedá na otázku, ako nájsť súčet aritmetickej postupnosti (prvých prvkov), ale často je v úlohách potrebné sčítať sériu čísel v strede postupnosti. Ako to spraviť?

Najjednoduchší spôsob, ako odpovedať na túto otázku, je zvážiť nasledujúci príklad: nech je potrebné nájsť súčet členov od m-tého po n-tý. Na vyriešenie problému by mal byť daný segment od m do n znázornený ako nový číselný rad. V takej zastúpenie m-tčlen a m bude prvý a a n bude očíslované n-(m-1). V tomto prípade použitím štandardného vzorca pre súčet získame nasledujúci výraz:

S m n \u003d (n - m + 1) * (a m + an) / 2.

Príklad použitia vzorcov

Keď vieme, ako nájsť súčet aritmetickej progresie, stojí za to zvážiť jednoduchý príklad použitia vyššie uvedených vzorcov.

Nižšie je číselná postupnosť, mali by ste nájsť súčet jej členov, počnúc 5. a končiac 12.:

Uvedené čísla naznačujú, že rozdiel d je rovný 3. Pomocou výrazu pre n-tý prvok môžete nájsť hodnoty 5. a 12. člena progresie. Ukázalo sa:

a 5 \u003d a 1 + d * 4 \u003d -4 + 3 * 4 \u003d 8;

a 12 \u003d a 1 + d * 11 \u003d -4 + 3 * 11 \u003d 29.

Keď poznáte hodnoty čísel na koncoch uvažovanej algebraickej progresie a tiež viete, aké čísla v sérii zaberajú, môžete použiť vzorec pre súčet získaný v predchádzajúcom odseku. Získajte:

S 5 12 \u003d (12 - 5 + 1) * (8 + 29) / 2 \u003d 148.

Stojí za zmienku, že túto hodnotu možno získať inak: najprv nájdite súčet prvých 12 prvkov pomocou štandardného vzorca, potom vypočítajte súčet prvých 4 prvkov pomocou rovnakého vzorca a potom odčítajte druhý od prvého súčtu. .

Niekto narába so slovom „progresia“ opatrne, ako s veľmi zložitým pojmom zo sekcií vyššej matematiky. Medzitým je najjednoduchším aritmetickým postupom práca počítadla taxíkov (kde stále zostávajú). A pochopiť podstatu (a v matematike nie je nič dôležitejšie ako „pochopiť podstatu“) aritmetickej postupnosti nie je také ťažké, po analýze niekoľkých základných konceptov.

Matematická postupnosť čísel

Je zvykom nazývať číselnú postupnosť radom čísel, z ktorých každé má svoje vlastné číslo.

a 1 je prvý člen sekvencie;

a 2 je druhý člen sekvencie;

a 7 je siedmy člen sekvencie;

a n je n-tý člen sekvencie;

Nás však nezaujíma žiadny ľubovoľný súbor čísel a čísel. Pozornosť zameriame na číselnú postupnosť, v ktorej hodnota n-tého člena súvisí s jeho poradovým číslom pomocou jasne matematicky formulovanej závislosti. Inými slovami: číselná hodnota n-tého čísla je nejakou funkciou n.

a - hodnota člena číselnej postupnosti;

n je jeho sériové číslo;

f(n) je funkcia, kde ordinál v číselnej postupnosti n je argument.

Definícia

Aritmetická postupnosť sa zvyčajne nazýva číselná postupnosť, v ktorej je každý nasledujúci člen väčší (menší) ako predchádzajúci o rovnaké číslo. Vzorec pre n-tý člen aritmetickej postupnosti je nasledujúci:

a n - hodnota aktuálneho člena aritmetickej progresie;

a n+1 - vzorec nasledujúceho čísla;

d - rozdiel (určité číslo).

Je ľahké určiť, že ak je rozdiel kladný (d>0), potom každý nasledujúci člen uvažovaného radu bude väčší ako predchádzajúci a takáto aritmetická progresia sa bude zvyšovať.

V nižšie uvedenom grafe je ľahké vidieť, prečo sa postupnosť čísel nazýva „narastajúca“.

V prípadoch, keď je rozdiel záporný (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Hodnota zadaného člena

Niekedy je potrebné určiť hodnotu nejakého ľubovoľného člena a n aritmetickej progresie. Môžete to urobiť postupným výpočtom hodnôt všetkých členov aritmetického postupu, od prvého po požadovaný. Tento spôsob však nie je vždy prijateľný, ak je napríklad potrebné nájsť hodnotu päťtisícového alebo osemmiliónového členu. Tradičný výpočet bude trvať dlho. Špecifický aritmetický postup však možno skúmať pomocou určitých vzorcov. Existuje aj vzorec pre n-tý člen: hodnotu ľubovoľného člena aritmetickej postupnosti možno určiť ako súčet prvého člena postupnosti s rozdielom postupnosti vynásobený číslom požadovaného člena mínus jedna .

Vzorec je univerzálny na zvýšenie a zníženie progresie.

Príklad výpočtu hodnoty daného člena

Vyriešme nasledujúci problém hľadania hodnoty n-tého člena aritmetickej postupnosti.

Podmienka: existuje aritmetická progresia s parametrami:

Prvý člen postupnosti je 3;

Rozdiel v číselnom rade je 1,2.

Úloha: je potrebné nájsť hodnotu 214 výrazov

Riešenie: Na určenie hodnoty daného člena použijeme vzorec:

a(n) = a1 + d(n-1)

Nahradením údajov z problémového príkazu do výrazu máme:

a(214) = a1 + d(n-1)

a(214) = 3 + 1,2 (214-1) = 258,6

Odpoveď: 214. člen postupnosti sa rovná 258,6.

Výhody tejto metódy výpočtu sú zrejmé - celé riešenie nezaberie viac ako 2 riadky.

Súčet daného počtu členov

Veľmi často je v danej aritmetickej sérii potrebné určiť súčet hodnôt niektorých jej segmentov. Tiež nie je potrebné počítať hodnoty každého výrazu a potom ich sčítať. Táto metóda je použiteľná, ak je počet členov, ktorých súčet treba nájsť, malý. V ostatných prípadoch je vhodnejšie použiť nasledujúci vzorec.

Súčet členov aritmetickej postupnosti od 1 do n sa rovná súčtu prvého a n-tého člena, vynásobený číslom člena n a delený dvoma. Ak je vo vzorci hodnota n-tého člena nahradená výrazom z predchádzajúceho odseku článku, dostaneme:

Príklad výpočtu

Vyriešme napríklad problém s nasledujúcimi podmienkami:

Prvý člen postupnosti je nula;

Rozdiel je 0,5.

V úlohe je potrebné určiť súčet členov radu od 56 do 101.

Riešenie. Na určenie súčtu progresie použijeme vzorec:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Najprv určíme súčet hodnôt 101 členov progresie dosadením daných podmienok nášho problému do vzorca:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2 525

Je zrejmé, že na zistenie súčtu členov postupu od 56. do 101. je potrebné odpočítať S 55 od S 101.

s55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Takže súčet aritmetickej progresie pre tento príklad je:

s 101 - s 55 \u003d 2 525 - 742,5 \u003d 1 782,5

Príklad praktickej aplikácie aritmetickej progresie

Na konci článku sa vráťme k príkladu aritmetickej postupnosti uvedenej v prvom odseku - taxametra (taxi car meter). Zoberme si taký príklad.

Vstup do taxíka (ktorý zahŕňa 3 km) stojí 50 rubľov. Každý nasledujúci kilometer sa platí sadzbou 22 rubľov / km. Dojazd 30 km. Vypočítajte si náklady na cestu.

1. Vyhoďme prvé 3 km, ktorých cena je zahrnutá v nákladoch na pristátie.

30 - 3 = 27 km.

2. Ďalší výpočet nie je nič iné ako analýza aritmetického číselného radu.

Členské číslo je počet prejdených kilometrov (mínus prvé tri).

Hodnota člena je súčet.

Prvý termín v tomto probléme sa bude rovnať 1 = 50 rubľov.

Rozdiel v postupe d = 22 p.

číslo, ktoré nás zaujíma - hodnota (27 + 1) člena aritmetického postupu - stav merača na konci 27. kilometra - 27,999 ... = 28 km.

a 28 \u003d 50 + 22 ∙ (28 - 1) \u003d 644

Výpočty kalendárnych údajov za ľubovoľne dlhé obdobie sú založené na vzorcoch popisujúcich určité číselné postupnosti. V astronómii je dĺžka obežnej dráhy geometricky závislá od vzdialenosti nebeského telesa od svietidla. Okrem toho sa rôzne číselné rady úspešne používajú v štatistike a iných aplikovaných odvetviach matematiky.

Iný druh číselnej postupnosti je geometrický

Geometrická progresia je charakterizovaná veľkou rýchlosťou zmeny v porovnaní s aritmetickou. Nie je náhoda, že v politike, sociológii, medicíne často, aby ukázali vysokú rýchlosť šírenia určitého javu, napríklad choroby počas epidémie, hovoria, že proces sa vyvíja exponenciálne.

N-tý člen geometrického číselného radu sa líši od predchádzajúceho tým, že je vynásobený nejakým konštantným číslom - menovateľ, napríklad prvý člen je 1, menovateľ je 2, potom:

n = 1: 1 ∙ 2 = 2

n = 2: 2 ∙ 2 = 4

n = 3: 4 ∙ 2 = 8

n = 4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - hodnota aktuálneho člena geometrickej progresie;

b n+1 - vzorec ďalšieho člena geometrickej postupnosti;

q je menovateľ geometrickej postupnosti (konštantné číslo).

Ak je graf aritmetickej progresie priamka, potom geometrický graf nakreslí trochu iný obrázok:

Rovnako ako v prípade aritmetiky, geometrická postupnosť má vzorec pre hodnotu ľubovoľného člena. Akýkoľvek n-tý člen geometrickej postupnosti sa rovná súčinu prvého člena a menovateľa postupnosti k mocnine n zníženému o jednotku:

Príklad. Máme geometrickú postupnosť s prvým členom rovným 3 a menovateľom postupnosti rovným 1,5. Nájdite 5. termín postupu

b 5 \u003d b 1 ∙ q (5-1) \u003d 3 ∙ 1,5 4 \u003d 15,1875

Súčet daného počtu členov sa tiež vypočíta pomocou špeciálneho vzorca. Súčet prvých n členov geometrickej postupnosti sa rovná rozdielu medzi súčinom n-tého člena postupnosti a jeho menovateľa a prvého člena postupnosti vydelenému menovateľom zníženým o jednu:

Ak sa b n nahradí pomocou vyššie uvedeného vzorca, hodnota súčtu prvých n členov uvažovaného číselného radu bude mať tvar:

Príklad. Geometrická postupnosť začína prvým členom rovným 1. Menovateľ je nastavený na 3. Nájdite súčet prvých ôsmich členov.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

Aritmetické a geometrické postupnosti

Teoretické informácie

Teoretické informácie

Aritmetický postup

Geometrická progresia

Definícia

Aritmetický postup a n volá sa postupnosť, ktorej každý člen, počnúc druhým, sa rovná predchádzajúcemu členu, sčítanému s rovnakým číslom d (d- progresívny rozdiel)

geometrická progresia b n volá sa postupnosť nenulových čísel, z ktorých každý člen od druhého sa rovná predchádzajúcemu členu vynásobenému rovnakým číslom q (q- menovateľ progresie)

Opakujúci sa vzorec

Pre akékoľvek prírodné n
a n + 1 = a n + d

Pre akékoľvek prírodné n
b n + 1 = b n ∙ q, b n ≠ 0

vzorec n-tého členu

a n = a 1 + d (n - 1)

b n \u003d b 1 ∙ q n - 1, b n ≠ 0

charakteristickú vlastnosť
Súčet prvých n členov

Príklady úloh s komentármi

Cvičenie 1

V aritmetickom postupe ( a n) 1 = -6, a 2

Podľa vzorca n-tého členu:

22 = 1+ d (22 - 1) = 1+ 21 d

Podľa podmienok:

1= -6, takže 22= -6 + 21 d.

Je potrebné nájsť rozdiel v postupnosti:

d= a 2 – a 1 = -8 – (-6) = -2

22 = -6 + 21 ∙ (-2) = - 48.

odpoveď: 22 = -48.

Úloha 2

Nájdite piaty člen geometrickej postupnosti: -3; 6;...

1. spôsob (pomocou n-členného vzorca)

Podľa vzorca n-tého člena geometrickej postupnosti:

b 5 \u003d b 1 ∙ q 5 - 1 = b 1 ∙ q 4.

Pretože b 1 = -3,

2. spôsob (pomocou rekurzívneho vzorca)

Keďže menovateľ progresie je -2 (q = -2), potom:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

odpoveď: b 5 = -48.

Úloha 3

V aritmetickom postupe ( a n) a 74 = 34; 76= 156. Nájdite sedemdesiaty piaty člen tohto postupu.

Pre aritmetickú progresiu má charakteristická vlastnosť tvar .

Preto:

.

Nahraďte údaje vo vzorci:

odpoveď: 95.

Úloha 4

V aritmetickom postupe ( a n) a n= 3n - 4. Nájdite súčet prvých sedemnástich členov.

Na nájdenie súčtu prvých n členov aritmetickej progresie sa používajú dva vzorce:

.

Ktorý z nich je v tomto prípade výhodnejší?

Podľa podmienky je známy vzorec n-tého člena pôvodnej postupnosti ( a n) a n= 3n - 4. Možno ihneď nájsť a 1, a 16 bez nájdenia d . Preto používame prvý vzorec.

Odpoveď: 368.

Úloha 5

V aritmetickej progresii a n) 1 = -6; a 2= -8. Nájdite dvadsiaty druhý termín postupu.

Podľa vzorca n-tého členu:

a 22 = a 1 + d (22 – 1) = 1+ 21 d.

Podľa podmienky, ak 1= -6 teda 22= -6 + 21 d. Je potrebné nájsť rozdiel v postupnosti:

d= a 2 – a 1 = -8 – (-6) = -2

22 = -6 + 21 ∙ (-2) = -48.

odpoveď: 22 = -48.

Úloha 6

Zaznamenáva sa niekoľko po sebe nasledujúcich členov geometrickej progresie:

Nájdite člen postupnosti označený písmenom x .

Pri riešení používame vzorec pre n-tý člen b n \u003d b 1 ∙ q n - 1 pre geometrické postupnosti. Prvý člen postupu. Ak chcete nájsť menovateľa progresie q, musíte vziať ktorýkoľvek z týchto členov progresie a vydeliť ho predchádzajúcim. V našom príklade môžete brať a deliť podľa. Dostaneme, že q \u003d 3. Namiesto n dosadíme do vzorca 3, pretože je potrebné nájsť tretí člen danej geometrickej postupnosti.

Nahradením nájdených hodnôt do vzorca dostaneme:

.

Odpoveď: .

Úloha 7

Z aritmetických postupností daných vzorcom n-tého člena vyberte ten, pre ktorý je podmienka splnená 27 > 9:

Keďže špecifikovaná podmienka musí byť splnená pre 27. člen postupnosti, dosadíme 27 namiesto n v každej zo štyroch postupností. V 4. postupe dostaneme:

.

odpoveď: 4.

Úloha 8

V aritmetickej progresii 1= 3, d = -1,5. Zadajte najväčšiu hodnotu n, pre ktorú platí nerovnosť a n > -6.