Vypočítajte plochu obrazca ohraničenú čiarami cez integrál. Nájdenie oblasti obrazca ohraničeného priamkami y=f(x), x=g(y)

a)

Riešenie.

Najprv a rozhodujúci moment riešenia - zostavenie výkresu.

Urobme si kresbu:

Rovnica y=0 nastavuje os x;

- x = -2 a x=1 - rovný, rovnobežný s osou OU;

- y \u003d x 2 +2 - parabola, ktorej vetvy smerujú nahor, s vrcholom v bode (0;2).

Komentujte. Na zostrojenie paraboly stačí nájsť body jej priesečníka so súradnicovými osami, t.j. uvedenie x=0 nájsť priesečník s osou OU a rozhodovanie o vhodnom kvadratická rovnica, nájdite priesečník s osou Oh .

Vrchol paraboly možno nájsť pomocou vzorcov:

Môžete kresliť čiary a bod po bode.

Na intervale [-2;1] graf funkcie y=x2+2 Nachádza cez os Vôl , preto:

odpoveď: S \u003d 9 štvorcových jednotiek

Po dokončení úlohy je vždy užitočné pozrieť sa na výkres a zistiť, či je odpoveď skutočná. V tomto prípade "od oka" spočítame počet buniek na výkrese - dobre, asi 9 bude napísaných, zdá sa, že je to pravda. Je úplne jasné, že ak by sme mali povedzme odpoveď: 20 štvorcových jednotiek, tak sa, samozrejme, niekde stala chyba – 20 buniek sa do daného čísla zjavne nezmestí, nanajvýš tucet. Ak bola odpoveď záporná, úloha bola tiež vyriešená nesprávne.

Čo robiť, ak sa nachádza krivočiary lichobežník pod nápravou Oh?

b) Vypočítajte plochu obrázku ohraničenú čiarami y=-e x , x=1 a súradnicové osi.

Riešenie.

Urobme si kresbu.

Ak krivočiary lichobežník úplne pod nápravou Oh , potom jeho oblasť možno nájsť podľa vzorca:

odpoveď: S=(e-1) sq. unit" 1,72 sq. unit

Pozor! Nezamieňajte si tieto dva typy úloh:

1) Ak ste požiadaní, aby ste vyriešili len určitý integrál bez akéhokoľvek geometrického významu, potom môže byť záporný.

2) Ak ste požiadaní, aby ste našli plochu obrazca pomocou určitého integrálu, potom je plocha vždy kladná! Preto sa v práve uvažovanom vzorci objavuje mínus.

V praxi sa najčastejšie postava nachádza v hornej aj dolnej polrovine.

s) Nájdite plochu rovinnej postavy ohraničenú čiarami y \u003d 2x-x 2, y \u003d -x.

Riešenie.

Najprv musíte urobiť kresbu. Všeobecne povedané, pri konštrukcii výkresu v plošných úlohách nás najviac zaujímajú priesečníky čiar. Nájdite priesečníky paraboly a priamy Dá sa to urobiť dvoma spôsobmi. Prvý spôsob je analytický.

Riešime rovnicu:

Čiže spodná hranica integrácie a=0 , horná hranica integrácie b = 3 .

Dané priamky postavíme: 1. Parabola - vrchol v bode (1;1); priesečník osí oh - body (0;0) a (0;2). 2. Priamka - os 2. a 4. súradnicového uhla. A teraz Pozor! Ak na segmente [ a;b] nejaká nepretržitá funkcia f(x) väčšia alebo rovná nejakej spojitej funkcii g(x), potom oblasť zodpovedajúceho obrázku možno nájsť podľa vzorca: .


A nezáleží na tom, kde sa obrázok nachádza - nad osou alebo pod osou, ale je dôležité, ktorý graf je VYŠŠÍ (v porovnaní s iným grafom) a ktorý je POD. V uvažovanom príklade je zrejmé, že na segmente sa parabola nachádza nad priamkou, a preto je potrebné odpočítať od

Je možné konštruovať čiary bod po bode, pričom hranice integrácie sa zisťujú akoby „sami od seba“. Analytická metóda hľadania limitov sa však stále niekedy musí použiť, ak je napríklad graf dostatočne veľký alebo závitová konštrukcia neodhalila limity integrácie (môžu byť zlomkové alebo iracionálne).

Požadovaný údaj je ohraničený parabolou zhora a priamkou zdola.

Na segmente , podľa zodpovedajúceho vzorca:

odpoveď: S \u003d 4,5 štvorcových jednotiek

Útvar ohraničený grafom spojitej nezápornej funkcie $f(x)$ na intervale $$ a priamkami $y=0, \ x=a$ a $x=b$ sa nazýva krivočiary lichobežník.

Oblasť zodpovedajúcej krivočiary lichobežník vypočítané podľa vzorca:

$S=\int\limits_(a)^(b)(f(x)dx).$ (*)

Problémy s nájdením oblasti krivočiareho lichobežníka podmienečne rozdelíme na typy 4 $. Zvážme každý typ podrobnejšie.

Typ I: krivočiary lichobežník je uvedený výslovne. Potom okamžite použite vzorec (*).

Napríklad nájdite oblasť krivočiareho lichobežníka ohraničenú grafom funkcie $y=4-(x-2)^(2)$ a čiarami $y=0, \ x=1$ a $x = 3 doláre.

Nakreslíme tento krivočiary lichobežník.

Použitím vzorca (*) nájdeme oblasť tohto krivočiareho lichobežníka.

$S=\int\limits_(1)^(3)(\left(4-(x-2)^(2)\right)dx)=\int\limits_(1)^(3)(4dx)- \int\limits_(1)^(3)((x-2)^(2)dx)=4x|_(1)^(3) – \left.\frac((x-2)^(3) )(3)\vpravo|_(1)^(3)=$

$=4(3-1)-\frac(1)(3)\left((3-2)^(3)-(1-2)^(3)\right)=4 \cdot 2 - \frac (1)(3)\vľavo((1)^(3)-(-1)^(3)\vpravo) = 8 – \frac(1)(3)(1+1) =$

$=8-\frac(2)(3)=7\frac(1)(3)$ (jednotka $^(2)$).

Typ II: krivočiary lichobežník je daný implicitne. V tomto prípade priame čiary $x=a, \ x=b$ zvyčajne nie sú špecifikované alebo sú špecifikované čiastočne. V tomto prípade musíte nájsť priesečníky funkcií $y=f(x)$ a $y=0$. Tieto body budú body $a$ a $b$.

Napríklad nájdite plochu obrázku ohraničenú grafmi funkcií $y=1-x^(2)$ a $y=0$.

Poďme nájsť priesečníky. Aby sme to dosiahli, porovnávame správne časti funkcií.

Takže $a=-1$ a $b=1$. Nakreslíme tento krivočiary lichobežník.

Nájdite oblasť tohto krivočiareho lichobežníka.

$S=\int\limits_(-1)^(1)(\left(1-x^(2)\right)dx)=\int\limits_(-1)^(1)(1dx)-\int \limits_(-1)^(1)(x^(2)dx)=x|_(-1)^(1) – \left.\frac(x^(3))(3)\right|_ (-1)^(1)=$

$=(1-(-1))-\frac(1)(3)\left(1^(3)-(-1)^(3)\right)=2 – \frac(1)(3) \left(1+1\right) = 2 – \frac(2)(3) = 1\frac(1)(3)$ (jednotka$^(2)$).

Typ III: plocha obrazca ohraničená priesečníkom dvoch súvislých nezáporných funkcií. Toto číslo nebude krivočiary lichobežník, čo znamená, že pomocou vzorca (*) nemôžete vypočítať jeho plochu. Ako byť? Ukazuje sa, že oblasť tohto obrázku možno nájsť ako rozdiel medzi plochami krivočiarych lichobežníkov ohraničených hornou funkciou a $y=0$ ($S_(uf)$) a dolnou funkciou a $y= 0$ ($S_(lf)$), kde úlohu $x=a, \ x=b$ zohrávajú $x$ súradnice priesečníkov týchto funkcií, t.j.

$S=S_(uf)-S_(lf)$. (**)

Najdôležitejšou vecou pri výpočte takýchto plôch je „neprehliadnuť“ výber hornej a dolnej funkcie.

Nájdite napríklad oblasť obrázku ohraničenú funkciami $y=x^(2)$ a $y=x+6$.

Nájdite priesečníky týchto grafov:

Podľa Vietovej vety,

$x_(1)=-2, \ x_(2)=3,$

To znamená $a=-2, \b=3$. Nakreslíme postavu:

Takže horná funkcia je $y=x+6$ a spodná je $y=x^(2)$. Ďalej nájdite $S_(uf)$ a $S_(lf)$ pomocou vzorca (*).

$S_(uf)=\int\limits_(-2)^(3)((x+6)dx)=\int\limits_(-2)^(3)(xdx)+\int\limits_(-2 )^(3)(6dx)=\vľavo.\frac(x^(2))(2)\vpravo|_(-2)^(3) + 6x|_(-2)^(3)= 32 ,5$ (jednotka $^(2)$).

$S_(lf)=\int\limits_(-2)^(3)(x^(2)dx)=\vľavo.\frac(x^(3))(3)\vpravo|_(-2) ^(3) = \frac(35)(3)$ (jednotka$^(2)$).

Náhradu nájdete v (**) a získate:

$S=32,5-\frac(35)(3)= \frac(125)(6)$ (jednotka $^(2)$).

Typ IV: oblasť obrazca ohraničená funkciou (funkciami), ktorá nespĺňa podmienku nezápornosti. Aby ste našli oblasť takejto postavy, musíte byť symetrická okolo osi $Ox$ ( inými slovami, dať „mínusy“ pred funkcie) zobrazte oblasť a pomocou metód popísaných v typoch I - III nájdite oblasť zobrazenej oblasti. Táto oblasť bude požadovaná oblasť. Najprv možno budete musieť nájsť priesečníky grafov funkcií.

Napríklad nájdite oblasť obrázku ohraničenú grafmi funkcií $y=x^(2)-1$ a $y=0$.

Nájdite priesečníky grafov funkcií:

tie. $a=-1$ a $b=1$. Nakreslíme oblasť.

Zobrazme oblasť symetricky:

$y=0 \ \Šípka doprava \ y=-0=0$

$y=x^(2)-1 \ \Šípka doprava \ y= -(x^(2)-1) = 1-x^(2)$.

Získate krivočiary lichobežník ohraničený grafom funkcie $y=1-x^(2)$ a $y=0$. Toto je problém nájsť krivočiary lichobežník druhého typu. Už sme to vyriešili. Odpoveď bola: $S= 1\frac(1)(3)$ (jednotky $^(2)$). Takže plocha požadovaného krivočiareho lichobežníka sa rovná:

$S=1\frac(1)(3)$ (jednotka$^(2)$).

Určitý integrál. Ako vypočítať plochu obrázku

Teraz prejdeme k úvahám o aplikáciách integrálneho počtu. V tejto lekcii budeme analyzovať typickú a najbežnejšiu úlohu. Ako použiť určitý integrál na výpočet plochy rovinného útvaru. Napokon, tí, ktorí hľadajú zmysel vo vyššej matematike – nech ho nájdu. Nikdy nevieš. V živote sa musíme zblížiť vidiecka chatová oblasť elementárnych funkcií a nájsť jej obsah pomocou určitého integrálu.

Ak chcete úspešne zvládnuť materiál, musíte:

1) pochopiť neurčitý integrál aspoň na priemernej úrovni. Preto by si figuríny mali lekciu najskôr prečítať nie.

2) Byť schopný použiť Newtonov-Leibnizov vzorec a vypočítať určitý integrál. Kovať teplo priateľské vzťahy s určitými integrálmi nájdete na stránke Určitý integrál. Príklady riešení.

V skutočnosti, aby ste našli oblasť obrázku, nepotrebujete toľko vedomostí o neurčitom a určitom integráli. Úloha "vypočítať plochu pomocou určitého integrálu" vždy zahŕňa konštrukciu výkresu, o veľa viac aktuálny problém budú vaše vedomosti a zručnosti v kreslení. V tomto ohľade je užitočné osviežiť si pamäť grafov hlavných elementárnych funkcií a prinajmenšom vedieť zostaviť priamku, parabolu a hyperbolu. To sa dá (mnohí potrebujú) pomocou metodický materiál a články o geometrických transformáciách grafov.

V skutočnosti každý pozná problém hľadania oblasti pomocou určitého integrálu už od školy a my trochu predbehneme školské osnovy. Tento článok by možno vôbec neexistoval, ale faktom je, že problém nastáva v 99 prípadoch zo 100, keď študenta s nadšením s ovládaním kurzu vyššej matematiky trápi nenávidená veža.

Materiály tohto workshopu sú prezentované jednoducho, podrobne a s minimom teórie.

Začnime s krivočiarym lichobežníkom.

Krivočiary lichobežník nazývaný plochý útvar ohraničený osou , priamkami , a grafom funkcie súvislej na segmente, ktorý nemení znamienko na tomto intervale. Nechajte tento obrázok nájsť nie menejúsečka:

Potom plocha krivočiareho lichobežníka sa číselne rovná určitému integrálu. Akýkoľvek určitý integrál (ktorý existuje) má veľmi dobrý geometrický význam. Na lekcii Určitý integrál. Príklady riešení Povedal som, že určitý integrál je číslo. A teraz je čas uviesť ďalší užitočný fakt. Z hľadiska geometrie je určitým integrálom PLOCHA.

teda určitý integrál (ak existuje) geometricky zodpovedá ploche nejakého obrázku. Uvažujme napríklad určitý integrál . Integrand definuje krivku v rovine, ktorá sa nachádza nad osou (tí, ktorí si želajú, môžu dokončiť výkres) a samotný určitý integrál sa číselne rovná ploche zodpovedajúceho krivočiareho lichobežníka.

Príklad 1

Toto je typická úloha. Prvým a najdôležitejším momentom rozhodnutia je konštrukcia výkresu. Okrem toho musí byť vytvorený výkres SPRÁVNY.

Pri zostavovaní plánu odporúčam nasledujúce poradie: najprv je lepšie zostaviť všetky čiary (ak existujú) a len po- paraboly, hyperboly, grafy iných funkcií. Vytváranie funkčných grafov je výhodnejšie bod po bode, techniku ​​bodovej konštrukcie nájdete v referenčný materiál Grafy a vlastnosti elementárnych funkcií. Nájdete tam aj materiál, ktorý je veľmi užitočný v súvislosti s našou lekciou - ako rýchlo postaviť parabolu.

V tomto probléme môže riešenie vyzerať takto.
Urobme nákres (všimnite si, že rovnica definuje os):


Nebudem šrafovať krivočiary lichobežník, je zrejmé, o akej oblasti sa tu bavíme. Riešenie pokračuje takto:

Na segmente sa nachádza graf funkcie cez os, preto:

odpoveď:

Kto má ťažkosti s výpočtom určitého integrálu a aplikáciou Newtonovho-Leibnizovho vzorca , pozrite si prednášku Určitý integrál. Príklady riešení.

Po dokončení úlohy je vždy užitočné pozrieť sa na výkres a zistiť, či je odpoveď skutočná. V tomto prípade „od oka“ spočítame počet buniek na výkrese - no, napíše sa asi 9, zdá sa, že je to pravda. Je celkom jasné, že ak by sme mali povedzme odpoveď: 20 štvorcových jednotiek, tak sa evidentne niekde stala chyba – 20 buniek sa evidentne nezmestí do predmetného čísla, nanajvýš tucet. Ak bola odpoveď záporná, úloha bola tiež vyriešená nesprávne.

Príklad 2

Vypočítajte plochu obrázku ohraničenú čiarami , , a osou

Toto je príklad „urob si sám“. Úplné riešenie a odpoveď na konci hodiny.

Čo robiť, ak sa nachádza krivočiary lichobežník pod nápravou?

Príklad 3

Vypočítajte plochu obrázku ohraničenú čiarami a súradnicovými osami.

Riešenie: Urobme kresbu:

Ak sa nachádza krivočiary lichobežník pod nápravou(alebo nakoniec nie vyššie danú os), potom jeho plochu možno nájsť podľa vzorca:
V tomto prípade:

Pozor! Nezamieňajte si tieto dva typy úloh:

1) Ak ste požiadaní, aby ste vyriešili len určitý integrál bez akéhokoľvek geometrického významu, potom môže byť záporný.

2) Ak ste požiadaní, aby ste našli plochu obrazca pomocou určitého integrálu, potom je plocha vždy kladná! Preto sa v práve uvažovanom vzorci objavuje mínus.

V praxi sa najčastejšie figúrka nachádza v hornej aj dolnej polrovine, a preto od najjednoduchších školských úloh prechádzame k zmysluplnejším príkladom.

Príklad 4

Nájdite plochu plochej postavy ohraničenú čiarami , .

Riešenie: Najprv musíte dokončiť výkres. Všeobecne povedané, pri konštrukcii výkresu v plošných úlohách nás najviac zaujímajú priesečníky čiar. Nájdite priesečníky paraboly a priamky. Dá sa to urobiť dvoma spôsobmi. Prvý spôsob je analytický. Riešime rovnicu:

Preto spodná hranica integrácie, horná hranica integrácie.
Ak je to možné, je lepšie túto metódu nepoužívať..

Oveľa výhodnejšie a rýchlejšie je stavať linky bod po bode, pričom hranice integrácie sa zistia akoby „sami od seba“. Technika vytvárania bodov po bode pre rôzne grafy je podrobne popísaná v pomocníkovi Grafy a vlastnosti elementárnych funkcií. Analytická metóda hľadania limitov sa však stále niekedy musí použiť, ak je napríklad graf dostatočne veľký alebo závitová konštrukcia neodhalila limity integrácie (môžu byť zlomkové alebo iracionálne). A tiež zvážime taký príklad.

Vraciame sa k našej úlohe: racionálnejšie je najprv zostrojiť priamku a až potom parabolu. Urobme si kresbu:

Opakujem, že pri bodovej konštrukcii sa hranice integrácie najčastejšie zisťujú „automaticky“.

A teraz pracovný vzorec: Ak je na intervale nejaká súvislá funkcia väčší alebo rovný nejaká spojitá funkcia, potom oblasť obrázku ohraničená grafmi týchto funkcií a priamkami, možno nájsť podľa vzorca:

Tu už nie je potrebné premýšľať o tom, kde sa postava nachádza - nad osou alebo pod osou, a zhruba povedané, záleží na tom, ktorý graf je NAD(vo vzťahu k inému grafu), a ktorý je DOLE.

V uvažovanom príklade je zrejmé, že na segmente sa parabola nachádza nad priamkou, a preto je potrebné odpočítať od

Dokončenie riešenia môže vyzerať takto:

Požadovaný údaj je ohraničený parabolou zhora a priamkou zdola.
Na segmente podľa zodpovedajúceho vzorca:

odpoveď:

V skutočnosti je školský vzorec pre oblasť krivočiareho lichobežníka v dolnej polrovine (pozri jednoduchý príklad č. 3) špeciálnym prípadom vzorca . Keďže os je daná rovnicou , a graf funkcie je umiestnený nie vyššie osy teda

A teraz pár príkladov pre nezávislé rozhodnutie

Príklad 5

Príklad 6

Nájdite oblasť obrázku ohraničenú čiarami , .

Pri riešení úloh na výpočet plochy pomocou určitého integrálu sa občas stane vtipná príhoda. Výkres bol urobený správne, výpočty boli správne, ale kvôli nepozornosti ... našiel oblasť nesprávnej postavy, tak sa tvoj poslušný sluha niekoľkokrát posral. Tu skutočný prípad zo života:

Príklad 7

Vypočítajte plochu obrázku ohraničenú čiarami , , , .

Riešenie: Najprv urobme kresbu:

...Eh, kresba vypadla, ale všetko sa zdá byť čitateľné.

Postava, ktorej oblasť potrebujeme nájsť, je vytieňovaná modrou farbou.(pozorne sa pozrite na stav - ako je postava obmedzená!). V praxi sa však v dôsledku nepozornosti často vyskytuje „závada“, že musíte nájsť oblasť obrázku, ktorá je zatienená v zelenej farbe!

Tento príklad je užitočný aj v tom, že sa v ňom plocha obrázku počíta pomocou dvoch určitých integrálov. naozaj:

1) Na segmente nad osou je priamkový graf;

2) Na segmente nad osou je hyperbolový graf.

Je celkom zrejmé, že oblasti sa môžu (a mali by) pridať, preto:

odpoveď:

Prejdime ešte k jednej zmysluplnej úlohe.

Príklad 8

Vypočítajte plochu obrazca ohraničenú čiarami,
Uveďme rovnice v „školskej“ forme a vykonajte kreslenie bod po bode:

Z nákresu je vidieť, že naša horná hranica je „dobrá“: .
Aká je však spodná hranica? Je jasné, že to nie je celé číslo, ale čo? Možno ? Ale kde je záruka, že výkres je vyrobený s dokonalou presnosťou, môže sa to ukázať. Alebo root. Čo ak sme ten graf vôbec nepochopili?

V takýchto prípadoch je potrebné venovať viac času a analyticky spresniť hranice integrácie.

Nájdite priesečníky priamky a paraboly.
Aby sme to dosiahli, riešime rovnicu:


,

Naozaj,.

Ďalšie riešenie je triviálne, hlavnou vecou nie je zmiasť sa v zámenách a znamienkach, výpočty tu nie sú najjednoduchšie.

Na segmente , podľa zodpovedajúceho vzorca:

odpoveď:

Na záver lekcie zvážime dve ťažšie úlohy.

Príklad 9

Vypočítajte plochu obrázku ohraničenú čiarami , ,

Riešenie: Nakreslite tento obrázok do výkresu.

Sakra, zabudol som podpísať rozvrh a prerobiť obrázok, pardon, nie hotz. Nie kresba, dnes je skrátka deň =)

Pre bodovú konštrukciu potrebujete vedieť vzhľad sínusoidy (a vo všeobecnosti je užitočné vedieť grafy všetkých elementárnych funkcií), ako aj niektoré sínusové hodnoty, možno ich nájsť v trigonometrická tabuľka. V niektorých prípadoch (ako v tomto prípade) je dovolené zostaviť schematický výkres, na ktorom musia byť grafy a integračné limity zobrazené v zásade správne.

Problémy s integračnými limitmi tu nie sú, vyplývajú priamo z podmienky: - "x" sa zmení z nuly na "pi". Robíme ďalšie rozhodnutie:

Na segmente je graf funkcie umiestnený nad osou, preto:

Úloha číslo 3. Vytvorte nákres a vypočítajte plochu figúry ohraničenú čiarami

Aplikácia integrálu na riešenie aplikovaných problémov

Výpočet plochy

Určitý integrál spojitej nezápornej funkcie f(x) sa numericky rovná oblasť krivočiareho lichobežníka ohraničeného krivkou y \u003d f (x), osou O x a priamkami x \u003d a a x \u003d b. V súlade s tým je vzorec oblasti napísaný takto:

Zvážte niekoľko príkladov výpočtu plôch rovinných útvarov.

Číslo úlohy 1. Vypočítajte plochu ohraničenú čiarami y \u003d x 2 +1, y \u003d 0, x \u003d 0, x \u003d 2.

Riešenie. Zostavme postavu, ktorej plochu budeme musieť vypočítať.

y \u003d x 2 + 1 je parabola, ktorej vetvy smerujú nahor a parabola je posunutá nahor o jednu jednotku vzhľadom na os O y (obrázok 1).

Obrázok 1. Graf funkcie y = x 2 + 1

Úloha číslo 2. Vypočítajte plochu ohraničenú čiarami y \u003d x 2 - 1, y \u003d 0 v rozsahu od 0 do 1.


Riešenie. Grafom tejto funkcie je parabola vetvy, ktorá smeruje nahor, pričom parabola je voči osi O y posunutá nadol o jednu jednotku (obrázok 2).

Obrázok 2. Graf funkcie y \u003d x 2 - 1


Úloha číslo 3. Vytvorte nákres a vypočítajte plochu figúry ohraničenú čiarami

y = 8 + 2x - x 2 a y = 2x - 4.

Riešenie. Prvá z týchto dvoch čiar je parabola s vetvami smerujúcimi nadol, pretože koeficient na x 2 je záporný, a druhá čiara je priamka pretínajúca obe súradnicové osi.

Na zostrojenie paraboly nájdime súradnice jej vrcholu: y'=2 – 2x; 2 – 2x = 0, x = 1 – vrchol x os; y(1) = 8 + 2∙1 – 1 2 = 9 je jeho ordináta, N(1;9) je jeho vrchol.

Teraz nájdeme priesečníky paraboly a priamky riešením sústavy rovníc:

Vyrovnanie pravých strán rovnice, ktorej ľavé strany sú rovnaké.

Získame 8 + 2x - x 2 \u003d 2x - 4 alebo x 2 - 12 \u003d 0, odkiaľ .

Body sú teda priesečníky paraboly a priamky (obrázok 1).


Obrázok 3 Grafy funkcií y = 8 + 2x – x 2 a y = 2x – 4

Zostrojme priamku y = 2x - 4. Prechádza bodmi (0;-4), (2; 0) na súradnicových osiach.

Na zostavenie paraboly môžete mať aj jej priesečníky s osou 0x, teda korene rovnice 8 + 2x - x 2 = 0 alebo x 2 - 2x - 8 = 0. Podľa Vietovej vety je to ľahko nájsť jeho korene: x 1 = 2, x 2 = štyri.

Obrázok 3 zobrazuje obrazec (parabolický segment M1N M2) ohraničený týmito čiarami.

Druhou časťou problému je nájsť oblasť tohto obrázku. Jeho obsah možno nájsť pomocou určitého integrálu pomocou vzorca .

Vzhľadom na túto podmienku dostaneme integrál:

2 Výpočet objemu rotačného telesa

Objem tela získaný z rotácie krivky y \u003d f (x) okolo osi O x sa vypočíta podľa vzorca:

Pri otáčaní okolo osi Oy vzorec vyzerá takto:

Úloha číslo 4. Určte objem tela získaného rotáciou krivočiareho lichobežníka ohraničeného priamkami x \u003d 0 x \u003d 3 a krivkou y \u003d okolo osi O x.

Riešenie. Zostavme výkres (obrázok 4).

Obrázok 4. Graf funkcie y =

Požadovaný objem sa rovná


Úloha číslo 5. Vypočítajte objem telesa získaný rotáciou krivočiareho lichobežníka ohraničeného krivkou y = x 2 a priamkami y = 0 a y = 4 okolo osi O y .

Riešenie. Máme:

Kontrolné otázky

Ako vložiť matematické vzorce na stránku?

Ak niekedy potrebujete pridať jeden alebo dva matematické vzorce na webovú stránku, najjednoduchší spôsob, ako to urobiť, je popísaný v článku: matematické vzorce sa jednoducho vložia na stránku vo forme obrázkov, ktoré Wolfram Alpha automaticky generuje. Táto univerzálna metóda okrem jednoduchosti pomôže zlepšiť viditeľnosť stránky vo vyhľadávačoch. Funguje to už dlho (a myslím si, že bude fungovať navždy), ale je morálne zastarané.

Ak na svojej stránke neustále používate matematické vzorce, potom vám odporúčam použiť MathJax, špeciálnu knižnicu JavaScript, ktorá zobrazuje matematický zápis vo webových prehliadačoch pomocou značiek MathML, LaTeX alebo ASCIIMathML.

Existujú dva spôsoby, ako začať používať MathJax: (1) pomocou jednoduchého kódu môžete rýchlo pripojiť skript MathJax na vašu stránku, ktorý sa automaticky načíta zo vzdialeného servera v správnom čase (zoznam serverov); (2) nahrajte skript MathJax zo vzdialeného servera na váš server a pripojte ho ku všetkým stránkam vášho webu. Druhý spôsob je zložitejší a časovo náročnejší a umožní vám zrýchliť načítavanie stránok vášho webu a ak sa materský server MathJax stane z nejakého dôvodu dočasne nedostupným, nijako to neovplyvní vašu vlastnú stránku. Napriek týmto výhodám som zvolil prvý spôsob, keďže je jednoduchší, rýchlejší a nevyžaduje technické zručnosti. Nasledujte môj príklad a do 5 minút budete môcť na svojej stránke využívať všetky funkcie MathJax.

Skript knižnice MathJax môžete pripojiť zo vzdialeného servera pomocou dvoch možností kódu prevzatých z hlavnej webovej stránky MathJax alebo zo stránky dokumentácie:

Jednu z týchto možností kódu je potrebné skopírovať a vložiť do kódu vašej webovej stránky, najlepšie medzi značky a alebo hneď za značkou . Podľa prvej možnosti sa MathJax načítava rýchlejšie a menej spomaľuje stránku. Ale druhá možnosť automaticky sleduje a načítava najnovšie verzie MathJax. Ak vložíte prvý kód, bude potrebné ho pravidelne aktualizovať. Ak prilepíte druhý kód, stránky sa budú načítavať pomalšie, ale nebudete musieť neustále sledovať aktualizácie MathJax.

Najjednoduchší spôsob pripojenia MathJax je v službe Blogger alebo WordPress: na ovládacom paneli lokality pridajte miniaplikáciu určenú na vkladanie kódu JavaScript tretej strany, skopírujte do nej prvú alebo druhú verziu načítacieho kódu a umiestnite miniaplikáciu bližšie k začiatok šablóny (mimochodom, nie je to vôbec potrebné, pretože skript MathJax sa načítava asynchrónne). To je všetko. Teraz sa naučte syntax značiek MathML, LaTeX a ASCIIMathML a ste pripravení vložiť matematické vzorce do svojich webových stránok.

Akýkoľvek fraktál je zostavený podľa určitého pravidla, ktoré sa dôsledne uplatňuje neobmedzený počet krát. Každý takýto čas sa nazýva iterácia.

Iteračný algoritmus na zostavenie Mengerovej špongie je celkom jednoduchý: pôvodná kocka so stranou 1 je rozdelená rovinami rovnobežnými s jej plochami na 27 rovnakých kociek. Odstráni sa z nej jedna centrálna kocka a 6 kociek, ktoré k nej priliehajú pozdĺž plôch. Vznikne sada pozostávajúca z 20 zostávajúcich menších kociek. Ak urobíme to isté s každou z týchto kociek, dostaneme súpravu pozostávajúcu zo 400 menších kociek. Pokračujúc v tomto procese donekonečna, dostaneme Mengerovu špongiu.