Skaičiaus 8 logaritmas iki 3 bazės. Kas yra logaritmas. Logaritmų sprendimo pavyzdžiai

Algebra yra sudėtingas ir įdomus mokslas, pagrįstas daugybe funkcijų. Pažiūrėkime, kas yra logaritmas ir kokios jo savybės.

Logaritmas yra laipsnis, iki kurio reikia padidinti skaičių a, kad būtų gautas skaičius x.

Algebra žino daugybę logaritmų tipų. Labiausiai paplitę logaritmų tipai yra šie:

  • natūralus, kurio pagrindas e=2,718281, žymimas ln.
    Pavyzdys: ln1=0. lne=1;
  • dešimtainis su 10 pagrindu, žymimas lg.
    Pavyzdys: lg100=2. log 10 100=2, kadangi 10 2 =100;
  • dvejetainis, žymimas lb(b) arba lb 2 b. Ar lygties 2 x =b sprendinys.
    Pavyzdys: lb16=4.

Pastarieji plačiai naudojami informatikoje, informacijos teorijoje, taip pat daugelyje diskrečiosios matematikos posričių. Logaritmai padeda statistikos mokslininkams nustatyti svarbiausius tikimybių skirstinius. Jie taip pat naudojami genetikoje.

Skaičiavimas naudojant logaritmus

Matematikai jau seniai žinojo apie unikalias logaritmų savybes, taip pat apie galimybę juos panaudoti sudėtingiems skaičiavimams supaprastinti. Taigi, pereinant prie logaritmų:

  • daugyba lengvai pakeičiama pridėjimu;
  • dalyba – atėmus;
  • pakėlimas iki tam tikros galios arba šaknis tampa daugyba arba dalyba.

Skaičiuodami logaritmais, turėtumėte atsikratyti žurnalo ženklo. Kur:

  • Priežastis ir argumentas turi būti teigiami;
  • Bazė turi skirtis nuo vienos, nes šis skaičius, padidintas iki bet kokios galios, lieka nepakitęs.

Logaritminė funkcija

Skaičiavimams taip pat naudojama logaritminė funkcija y = loga x (kur a > 0, a ≠ 1). Tarp jo savybių yra šios:

  • šios funkcijos apibrėžimo sritis yra teigiamų skaičių aibėje;
  • funkcijų reikšmių rinkinys pavaizduotas realiais skaičiais;
  • funkcija neturi maksimalios ar minimalios reikšmės;
  • funkcija priklauso bendrajai formai, nėra lyginė ar nelyginė;
  • funkcija nėra periodinė;
  • grafikas eina per koordinačių ašis taške (1;0);
  • jei bazė didesnė už vienetą, funkcija didėja, o jei mažesnė už vieną – mažėja.

Dabar jūs turite idėją apie logaritmus, jų apimtį, taip pat logaritminės funkcijos savybes.

Skaičiaus b logaritmas iki pagrindo a yra eksponentas, iki kurio reikia pakelti skaičių a, kad gautume skaičių b.

Jei tada.

Logaritmas – kraštutinis svarbus matematinis dydis, kadangi logaritminis skaičiavimas leidžia ne tik spręsti eksponenlines lygtis, bet ir operuoti su eksponentais, diferencijuoti eksponentinę ir logaritminę funkcijas, jas integruoti ir nukreipti į priimtinesnę skaičiuoti formą.

Susisiekus su

Visos logaritmų savybės yra tiesiogiai susijusios su eksponentinių funkcijų savybėmis. Pavyzdžiui, tai, kad reiškia kad:

Pažymėtina, kad sprendžiant konkrečias problemas logaritmų savybės gali pasirodyti svarbesnės ir naudingesnės nei darbo su galiomis taisyklės.

Pateiksime keletą tapatybių:

Čia yra pagrindinės algebrinės išraiškos:

;

.

Dėmesio! gali egzistuoti tik esant x>0, x≠1, y>0.

Pabandykime suprasti klausimą, kas yra natūralūs logaritmai. Ypatingas susidomėjimas matematika atstovauja du tipus- pirmasis turi skaičių „10“ kaip pagrindą ir vadinamas „dešimtainiu logaritmu“. Antrasis vadinamas natūraliu. Natūralaus logaritmo pagrindas yra skaičius „e“. Apie tai mes išsamiai kalbėsime šiame straipsnyje.

Pavadinimai:

  • lg x - dešimtainis;
  • ln x - natūralus.

Naudojant tapatybę, matome, kad ln e = 1, taip pat tai, kad lg 10=1.

Natūralaus logaritmo grafikas

Sukurkime natūralaus logaritmo grafiką standartiniu klasikiniu metodu taškas po taško. Jei norite, galite patikrinti, ar teisingai sukonstruojame funkciją, išnagrinėję funkciją. Tačiau prasminga išmokti jį sukurti „rankiniu būdu“, kad žinotumėte, kaip teisingai apskaičiuoti logaritmą.

Funkcija: y = ln x. Užsirašykime taškų, per kuriuos eis grafikas, lentelę:

Paaiškinkime, kodėl pasirinkome šias konkrečias argumento x reikšmes. Viskas priklauso nuo tapatybės: . Natūralaus logaritmo atveju ši tapatybė atrodys taip:

Patogumui galime paimti penkis atskaitos taškus:

;

;

.

;

.

Taigi natūraliųjų logaritmų skaičiavimas yra gana paprasta užduotis, be to, supaprastina operacijų su laipsniais skaičiavimus, paverčiant juos į įprastas dauginimas.

Nubraižę grafiką taškas po taško, gauname apytikslį grafiką:

Natūralaus logaritmo apibrėžimo sritis (t. y. visos galiojančios argumento X reikšmės) yra visi skaičiai, didesni už nulį.

Dėmesio! Natūralaus logaritmo apibrėžimo sritis apima tik teigiamus skaičius! Apibrėžimo apimtis neapima x=0. Tai neįmanoma remiantis logaritmo egzistavimo sąlygomis.

Reikšmių diapazonas (ty visos galiojančios funkcijos y = ln x reikšmės) yra visi intervalo skaičiai.

Natūralaus žurnalo limitas

Studijuojant grafiką kyla klausimas – kaip funkcija elgiasi ties y<0.

Akivaizdu, kad funkcijos grafikas linkęs kirsti y ašį, bet negalės to padaryti, nes x natūralusis logaritmas<0 не существует.

Natūralumo riba žurnalas galima parašyti taip:

Logaritmo pagrindo pakeitimo formulė

Susitvarkyti su natūraliu logaritmu yra daug lengviau nei su logaritmu, kurio pagrindas yra savavališkas. Štai kodėl mes stengsimės išmokti bet kurį logaritmą sumažinti iki natūraliojo arba išreikšti jį į savavališką bazę natūraliais logaritmais.

Pradėkime nuo logaritminės tapatybės:

Tada bet koks skaičius arba kintamasis y gali būti pavaizduotas kaip:

kur x yra bet koks skaičius (teigiamas pagal logaritmo savybes).

Ši išraiška gali būti paimta logaritmiškai iš abiejų pusių. Padarykime tai naudodami savavališką bazę z:

Naudokime savybę (tik vietoj „c“ turime išraišką):

Iš čia gauname universalią formulę:

.

Visų pirma, jei z = e, tada:

.

Mes galėjome pateikti logaritmą į savavališką bazę, naudodami dviejų natūralių logaritmų santykį.

Mes sprendžiame problemas

Norėdami geriau suprasti natūralius logaritmus, pažvelkime į kelių problemų pavyzdžius.

1 problema. Būtina išspręsti lygtį ln x = 3.

Sprendimas: Naudodami logaritmo apibrėžimą: jei , tada , gauname:

2 problema. Išspręskite lygtį (5 + 3 * ln (x - 3)) = 3.

Sprendimas: Naudodami logaritmo apibrėžimą: jei , tada , gauname:

.

Dar kartą panaudokime logaritmo apibrėžimą:

.

Taigi:

.

Galite apytiksliai apskaičiuoti atsakymą arba palikti jį šioje formoje.

3 užduotis. Išspręskite lygtį.

Sprendimas: Pakeiskime: t = ln x. Tada lygtis bus tokia:

.

Turime kvadratinę lygtį. Raskime jo diskriminatorių:

Statistikoje ir tikimybių teorijoje logaritminiai dydžiai randami labai dažnai. Tai nenuostabu, nes skaičius e dažnai atspindi eksponentinių dydžių augimo greitį.

Informatikos moksle, programavime ir kompiuterių teorijoje su logaritmais susiduriama gana dažnai, pavyzdžiui, norint išsaugoti N bitų atmintyje.

Fraktalų ir matmenų teorijose logaritmai naudojami nuolat, nes tik jų pagalba nustatomi fraktalų matmenys.

Mechanikoje ir fizikoje Nėra skyriaus, kuriame nebūtų naudojami logaritmai. Barometrinis skirstinys, visi statistinės termodinamikos principai, Ciolkovskio lygtis ir kt. yra procesai, kuriuos matematiškai galima aprašyti tik naudojant logaritmus.

Chemijoje logaritmai naudojami Nernsto lygtyse ir redokso procesų aprašymuose.

Nuostabu, kad net muzikoje, norint sužinoti oktavos dalių skaičių, naudojami logaritmai.

Natūralusis logaritmas Funkcija y=ln x jos savybės

Natūralaus logaritmo pagrindinės savybės įrodymas

pagrindinės savybės.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

identiškais pagrindais

Log6 4 + log6 9.

Dabar šiek tiek apsunkinkime užduotį.

Logaritmų sprendimo pavyzdžiai

Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x >

Užduotis. Raskite posakio prasmę:

Perėjimas prie naujo pagrindo

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Užduotis. Raskite posakio prasmę:

Taip pat žiūrėkite:


Pagrindinės logaritmo savybės

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Rodiklis yra 2,718281828…. Norėdami prisiminti eksponentą, galite išstudijuoti taisyklę: eksponentas yra lygus 2,7 ir du kartus už Levo Nikolajevičiaus Tolstojaus gimimo metus.

Pagrindinės logaritmų savybės

Žinodami šią taisyklę, žinosite ir tikslią eksponento vertę, ir Levo Tolstojaus gimimo datą.


Logaritmų pavyzdžiai

Logaritminės išraiškos

1 pavyzdys.
A). x=10ac^2 (a>0,c>0).

Naudodami savybes 3.5 apskaičiuojame

2.

3.

4. Kur .



2 pavyzdys. Raskite x jei


3 pavyzdys. Pateikiame logaritmų reikšmę

Apskaičiuokite log(x), jei




Pagrindinės logaritmų savybės

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tomis pačiomis bazėmis: logax ir logay. Tada juos galima pridėti ir atimti, ir:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis dalykas čia yra identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log2 48 − log2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log3 135 − log3 5.

Vėlgi bazės yra tos pačios, todėl turime:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x > 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai , t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą. Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log7 496.

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log7 496 = 6 log7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslios galios: 16 = 24; 49 = 72. Turime:

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu.

Logaritminės formulės. Logaritmų sprendimų pavyzdžiai.

Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log2 7. Kadangi log2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Konkrečiai, jei nustatome c = x, gauname:

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti vietomis, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai randamos įprastose skaitinėse išraiškose. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log5 16 log2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Dabar „apverskime“ antrąjį logaritmą:

Kadangi sandauga nesikeičia pertvarkant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa veiksniu argumente. Skaičius n gali būti visiškai bet koks, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip jis vadinasi:.

Tiesą sakant, kas atsitiks, jei skaičius b padidintas iki tokios laipsnio, kad skaičius b iki šios laipsnio duotų skaičių a? Teisingai: rezultatas yra tas pats skaičius a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji įstrigo.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad log25 64 = log5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgdami į galių dauginimo su ta pačia baze taisykles, gauname:

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemų ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. logaa = 1 yra. Vieną kartą ir visiems laikams atsiminkite: logaritmas bet kuriam tos bazės pagrindui a yra lygus vienetui.
  2. loga 1 = 0 yra. Bazė a gali būti bet kokia, bet jei argumente yra vienas, logaritmas lygus nuliui! Kadangi a0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

Taip pat žiūrėkite:

B logaritmas iki a pagrindo reiškia išraišką. Apskaičiuoti logaritmą reiškia rasti laipsnį x (), kai lygybė tenkinama

Pagrindinės logaritmo savybės

Būtina žinoti aukščiau pateiktas savybes, nes jų pagrindu išsprendžiamos beveik visos su logaritmais susijusios problemos ir pavyzdžiai. Likusias egzotines savybes galima gauti atliekant matematines manipuliacijas su šiomis formulėmis

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Skaičiuodami logaritmų sumos ir skirtumo formulę (3.4) susiduri gana dažnai. Likusieji yra šiek tiek sudėtingi, tačiau atliekant daugybę užduočių jie yra būtini norint supaprastinti sudėtingas išraiškas ir apskaičiuoti jų reikšmes.

Dažni logaritmų atvejai

Kai kurie įprasti logaritmai yra tie, kurių bazė yra net dešimt, eksponentinė arba dvi.
Logaritmas iki dešimties pagrindo paprastai vadinamas dešimtainiu logaritmu ir tiesiog žymimas lg(x).

Iš įrašo aišku, kad pagrindai įraše neparašyti. Pavyzdžiui

Natūralusis logaritmas yra logaritmas, kurio bazė yra eksponentas (žymimas ln(x)).

Rodiklis yra 2,718281828…. Norėdami prisiminti eksponentą, galite išstudijuoti taisyklę: eksponentas yra lygus 2,7 ir du kartus už Levo Nikolajevičiaus Tolstojaus gimimo metus. Žinodami šią taisyklę, žinosite ir tikslią eksponento vertę, ir Levo Tolstojaus gimimo datą.

Ir dar vienas svarbus logaritmas dviem pagrindams žymimas

Funkcijos logaritmo išvestinė lygi vienetui, padalytam iš kintamojo

Integralinis arba antiderivinis logaritmas nustatomas pagal ryšį

Pateiktos medžiagos pakanka, kad išspręstumėte plačią su logaritmais ir logaritmais susijusių problemų klasę. Kad padėčiau suprasti medžiagą, pateiksiu tik kelis įprastus pavyzdžius iš mokyklos programos ir universitetų.

Logaritmų pavyzdžiai

Logaritminės išraiškos

1 pavyzdys.
A). x=10ac^2 (a>0,c>0).

Naudodami savybes 3.5 apskaičiuojame

2.
Pagal logaritmų skirtumo savybę turime

3.
Naudodami savybes 3.5 randame

4. Kur .

Iš pažiūros sudėtinga išraiška supaprastinama, kad būtų suformuota naudojant daugybę taisyklių

Logaritmo reikšmių paieška

2 pavyzdys. Raskite x jei

Sprendimas. Skaičiavimui taikome paskutinio termino 5 ir 13 savybių

Įrašome tai ir gedime

Kadangi bazės yra lygios, išraiškas sulyginame

Logaritmai. Pirmas lygis.

Pateikiame logaritmų reikšmę

Apskaičiuokite log(x), jei

Sprendimas: Paimkime kintamojo logaritmą, kad užrašytume logaritmą per jo terminų sumą


Tai tik mūsų pažinties su logaritmais ir jų savybėmis pradžia. Praktikuokite skaičiavimus, praturtinkite savo praktinius įgūdžius – greitai jums prireiks įgytų žinių sprendžiant logaritmines lygtis. Išstudijavę pagrindinius tokių lygčių sprendimo būdus, jūsų žinias išplėsime į kitą ne mažiau svarbią temą - logaritmines nelygybes...

Pagrindinės logaritmų savybės

Logaritmus, kaip ir bet kokius skaičius, galima visais būdais sudėti, atimti ir transformuoti. Bet kadangi logaritmai nėra visiškai įprasti skaičiai, čia yra taisyklės, kurios vadinamos pagrindinės savybės.

Jūs tikrai turite žinoti šias taisykles – be jų nepavyks išspręsti nė vienos rimtos logaritminės problemos. Be to, jų labai mažai – viską gali išmokti per vieną dieną. Taigi pradėkime.

Logaritmų pridėjimas ir atėmimas

Apsvarstykite du logaritmus su tomis pačiomis bazėmis: logax ir logay. Tada juos galima pridėti ir atimti, ir:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Taigi logaritmų suma lygi sandaugos logaritmui, o skirtumas lygus koeficiento logaritmui. Atkreipkite dėmesį: pagrindinis dalykas čia yra identiškais pagrindais. Jei priežastys skiriasi, šios taisyklės neveikia!

Šios formulės padės apskaičiuoti logaritminę išraišką net tada, kai neatsižvelgiama į atskiras jos dalis (žr. pamoką „Kas yra logaritmas“). Pažvelkite į pavyzdžius ir pamatykite:

Užduotis. Raskite išraiškos reikšmę: log6 4 + log6 9.

Kadangi logaritmai turi tas pačias bazes, naudojame sumos formulę:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Užduotis. Raskite išraiškos reikšmę: log2 48 − log2 3.

Pagrindai yra vienodi, mes naudojame skirtumo formulę:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Užduotis. Raskite išraiškos reikšmę: log3 135 − log3 5.

Vėlgi bazės yra tos pačios, todėl turime:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Kaip matote, pradinės išraiškos yra sudarytos iš „blogų“ logaritmų, kurie nėra skaičiuojami atskirai. Bet po transformacijų gaunami visiškai normalūs skaičiai. Daugelis testų yra pagrįsti šiuo faktu. Taip, vieningo valstybinio egzamino metu į testus panašūs posakiai siūlomi labai rimtai (kartais praktiškai be pakeitimų).

Rodiklio išskyrimas iš logaritmo

Dabar šiek tiek apsunkinkime užduotį. Ką daryti, jei logaritmo pagrindas arba argumentas yra laipsnis? Tada šio laipsnio rodiklis gali būti paimtas iš logaritmo ženklo pagal šias taisykles:

Nesunku pastebėti, kad paskutinė taisyklė seka pirmąsias dvi. Bet vis tiek geriau tai atsiminti - kai kuriais atvejais tai žymiai sumažins skaičiavimų skaičių.

Žinoma, visos šios taisyklės turi prasmę, jei laikomasi logaritmo ODZ: a > 0, a ≠ 1, x > 0. Ir dar vienas dalykas: išmokite taikyti visas formules ne tik iš kairės į dešinę, bet ir atvirkščiai , t.y. Skaičius prieš logaritmo ženklą galite įvesti į patį logaritmą.

Kaip išspręsti logaritmus

Tai yra tai, ko dažniausiai reikia.

Užduotis. Raskite išraiškos reikšmę: log7 496.

Atsikratykime argumento laipsnio naudodami pirmąją formulę:
log7 496 = 6 log7 49 = 6 2 = 12

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad vardiklyje yra logaritmas, kurio pagrindas ir argumentas yra tikslios galios: 16 = 24; 49 = 72. Turime:

Manau, kad paskutinis pavyzdys reikalauja šiek tiek paaiškinimo. Kur dingo logaritmai? Iki pat paskutinės akimirkos dirbame tik su vardikliu. Pateikėme ten stovinčio logaritmo bazę ir argumentą galių pavidalu ir išėmėme eksponentus - gavome „trijų aukštų“ trupmeną.

Dabar pažvelkime į pagrindinę dalį. Skaitiklyje ir vardiklyje yra tas pats skaičius: log2 7. Kadangi log2 7 ≠ 0, tai trupmeną galime sumažinti – vardiklyje liks 2/4. Pagal aritmetikos taisykles keturis galima perkelti į skaitiklį, kas buvo padaryta. Rezultatas buvo atsakymas: 2.

Perėjimas prie naujo pagrindo

Kalbėdamas apie logaritmų sudėjimo ir atėmimo taisykles, konkrečiai pabrėžiau, kad jos veikia tik su tais pačiais pagrindais. O jei priežastys kitokios? O jei jie nėra tikslūs to paties skaičiaus laipsniai?

Į pagalbą ateina perėjimo prie naujo pagrindo formulės. Suformuluokime juos teoremos forma:

Pateikiame logaritmo logaksą. Tada bet kurio skaičiaus c, kurio c > 0 ir c ≠ 1, lygybė yra teisinga:

Konkrečiai, jei nustatome c = x, gauname:

Iš antrosios formulės išplaukia, kad logaritmo bazę ir argumentą galima sukeisti vietomis, tačiau tokiu atveju „apverčiama“ visa išraiška, t.y. vardiklyje atsiranda logaritmas.

Šios formulės retai randamos įprastose skaitinėse išraiškose. Įvertinti, kiek jos patogios, galima tik sprendžiant logaritmines lygtis ir nelygybes.

Tačiau yra problemų, kurių niekaip nepavyks išspręsti, išskyrus persikėlimą į naują fondą. Pažvelkime į porą iš šių:

Užduotis. Raskite išraiškos reikšmę: log5 16 log2 25.

Atkreipkite dėmesį, kad abiejų logaritmų argumentuose yra tikslios galios. Išimkime rodiklius: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Dabar „apverskime“ antrąjį logaritmą:

Kadangi sandauga nesikeičia pertvarkant veiksnius, ramiai padauginome keturis ir du, o tada nagrinėjome logaritmus.

Užduotis. Raskite išraiškos reikšmę: log9 100 lg 3.

Pirmojo logaritmo pagrindas ir argumentas yra tikslios galios. Užsirašykime tai ir atsikratykime rodiklių:

Dabar atsikratykime dešimtainio logaritmo, pereidami prie naujos bazės:

Pagrindinė logaritminė tapatybė

Dažnai sprendimo procese skaičių reikia pateikti kaip logaritmą tam tikram pagrindui. Šiuo atveju mums padės šios formulės:

Pirmuoju atveju skaičius n tampa veiksniu argumente. Skaičius n gali būti visiškai bet koks, nes tai tik logaritmo reikšmė.

Antroji formulė iš tikrųjų yra perfrazuotas apibrėžimas. Taip jis vadinasi:.

Tiesą sakant, kas atsitiks, jei skaičius b padidintas iki tokios laipsnio, kad skaičius b iki šios laipsnio duotų skaičių a? Teisingai: rezultatas yra tas pats skaičius a. Dar kartą atidžiai perskaitykite šią pastraipą – daugeliui žmonių ji įstrigo.

Kaip ir formulės, skirtos pereiti prie naujos bazės, pagrindinė logaritminė tapatybė kartais yra vienintelis galimas sprendimas.

Užduotis. Raskite posakio prasmę:

Atkreipkite dėmesį, kad log25 64 = log5 8 – tiesiog paėmė kvadratą iš logaritmo pagrindo ir argumento. Atsižvelgdami į galių dauginimo su ta pačia baze taisykles, gauname:

Jei kas nežino, tai buvo tikra užduotis iš unifikuoto valstybinio egzamino :)

Logaritminis vienetas ir logaritminis nulis

Baigdamas pateiksiu dvi tapatybes, kurias vargu ar galima pavadinti savybėmis – veikiau tai yra logaritmo apibrėžimo pasekmės. Jie nuolat atsiranda problemų ir, stebėtinai, sukelia problemų net „pažengusiems“ studentams.

  1. logaa = 1 yra. Vieną kartą ir visiems laikams atsiminkite: logaritmas bet kuriam tos bazės pagrindui a yra lygus vienetui.
  2. loga 1 = 0 yra. Bazė a gali būti bet kokia, bet jei argumente yra vienas, logaritmas lygus nuliui! Kadangi a0 = 1 yra tiesioginė apibrėžimo pasekmė.

Tai visos savybės. Būtinai praktikuokite juos pritaikydami praktiškai! Pamokos pradžioje atsisiųskite cheat lapą, atsispausdinkite ir išspręskite problemas.

Mums svarbu išlaikyti jūsų privatumą. Dėl šios priežasties sukūrėme Privatumo politiką, kurioje aprašoma, kaip naudojame ir saugome jūsų informaciją. Peržiūrėkite mūsų privatumo praktiką ir praneškite mums, jei turite klausimų.

Asmeninės informacijos rinkimas ir naudojimas

Asmeninė informacija reiškia duomenis, kurie gali būti naudojami konkretaus asmens tapatybei nustatyti arba susisiekti su juo.

Jūsų gali būti paprašyta pateikti savo asmeninę informaciją bet kuriuo metu, kai susisiekiate su mumis.

Toliau pateikiami keli pavyzdžiai, kokios rūšies asmeninės informacijos galime rinkti ir kaip galime tokią informaciją naudoti.

Kokią asmeninę informaciją renkame:

  • Kai pateikiate paraišką svetainėje, galime rinkti įvairią informaciją, įskaitant jūsų vardą, telefono numerį, el. pašto adresą ir kt.

Kaip naudojame jūsų asmeninę informaciją:

  • Mūsų renkama asmeninė informacija leidžia mums susisiekti su jumis dėl unikalių pasiūlymų, akcijų ir kitų renginių bei būsimų renginių.
  • Retkarčiais galime naudoti jūsų asmeninę informaciją svarbiems pranešimams ir pranešimams siųsti.
  • Mes taip pat galime naudoti asmeninę informaciją vidiniais tikslais, pavyzdžiui, atlikti auditą, duomenų analizę ir įvairius tyrimus, siekdami tobulinti teikiamas paslaugas ir teikti rekomendacijas dėl mūsų paslaugų.
  • Jei dalyvaujate prizų traukime, konkurse ar panašioje akcijoje, mes galime naudoti jūsų pateiktą informaciją tokioms programoms administruoti.

Informacijos atskleidimas trečiosioms šalims

Mes neatskleidžiame iš jūsų gautos informacijos trečiosioms šalims.

Išimtys:

  • Prireikus – įstatymų nustatyta tvarka, teismine tvarka, teisminio proceso metu ir (arba) remiantis viešais prašymais ar valdžios institucijų prašymais Rusijos Federacijos teritorijoje – atskleisti savo asmeninę informaciją. Taip pat galime atskleisti informaciją apie jus, jei nuspręsime, kad toks atskleidimas yra būtinas ar tinkamas saugumo, teisėsaugos ar kitais visuomenei svarbiais tikslais.
  • Reorganizavimo, susijungimo ar pardavimo atveju surinktą asmeninę informaciją galime perduoti atitinkamai trečiajai šaliai.

Asmeninės informacijos apsauga

Mes imamės atsargumo priemonių, įskaitant administracines, technines ir fizines, siekdami apsaugoti jūsų asmeninę informaciją nuo praradimo, vagystės ir netinkamo naudojimo, taip pat nuo neteisėtos prieigos, atskleidimo, pakeitimo ir sunaikinimo.

Jūsų privatumo gerbimas įmonės lygiu

Siekdami užtikrinti, kad jūsų asmeninė informacija būtų saugi, savo darbuotojams pranešame apie privatumo ir saugumo standartus ir griežtai vykdome privatumo praktiką.

Logaritmas teigiamas skaičius N į bazę(b> 0, b 1 ) vadinamas eksponentu x , prie kurios reikia statyti b gauti N .

Logaritmo žymėjimas:

Šis įrašas atitinka šį:b x = N .

PAVYZDŽIAI: 3 žurnalas 81 = 4, nes 3 4 = 81;

Prisijungti 1/3 27 = 3, nes (1/3) – 3 = 3 3 = 27.

Aukščiau pateiktas logaritmo apibrėžimas gali būti parašytas kaip tapatybė:

Pagrindinės logaritmų savybės.

1) žurnalas b= 1 , nes b 1 = b.

b

2) žurnalas 1 = 0 , nes b 0 = 1 .

b

3) Produkto logaritmas yra lygus faktorių logaritmų sumai:

log( ab) = žurnalas a+ žurnalas b.

4) Dalinio logaritmas yra lygus skirtumui tarp dividendo ir daliklio logaritmų:

log( a/b) = žurnalas a– žurnalas b.

5) Laipsnio logaritmas lygus eksponento sandaugai ir jo bazės logaritmui:

žurnalas (b k ) = kžurnalas b.

Šios nuosavybės pasekmės yra šios:šaknies logaritmas lygus radikalinio skaičiaus logaritmui, padalytam iš šaknies galios:

6) Jei logaritmo pagrindas yra laipsnis, tada reikšmė atvirkštinis rodiklis gali būti paimtas iš žurnalo ženklo rimas:

Paskutinės dvi savybės gali būti sujungtos į vieną:

7) Perėjimo modulio formulė (ty. e . perėjimas iš vienos bazėslogaritmas į kitą bazę):

Ypatingu atveju, kai N=a mes turime:

Dešimtainis logaritmas paskambino bazinis logaritmas 10. Jis yra nurodytas lg, t.y. žurnalas 10 N = lg N. Skaičių 10, 100, 1000, ... p skaičiai yra atitinkamai 1, 2, 3, …tie. turi tiek daug teigiamo

vienetų, kiek nulių yra logaritminiame skaičiuje po vieneto. Skaičių logaritmai 0,1, 0,01, 0,001, ... p avna atitinkamai –1, –2, –3, …, t.y. turėti tiek neigiamų, kiek prieš vienetą yra nulių logaritminiame skaičiuje ( skaičiavimas ir nulis sveikųjų skaičių). Logaritmai kiti skaičiai turi trupmeninę dalį mantisa. Visaslogaritmo dalis vadinama charakteristika. Praktiniam naudojimuiPatogiausias yra dešimtainis logaritmas.

Natūralus logaritmas paskambino bazinis logaritmas e. Jis yra paskirtas ln, t.y. žurnalas eN = ln N. Skaičius eyra neracionalu, taiapytikslė vertė 2,718281828. Tai yra riba, iki kurios linkęs skaičius(1 + 1 / n) n su neribotu padidėjimun(cm. pirmoji nuostabi riba ).
Kad ir kaip būtų keista, natūralūs logaritmai pasirodė labai patogūs atliekant įvairaus pobūdžio operacijas, susijusias su funkcijų analize.
Logaritmų skaičiavimas į bazęeatlikti daug greičiau nei dėl bet kokios kitos priežasties.