x का तीसरा मूल व्युत्पन्न। डेरिवेटिव के माध्यम से द्विघात समीकरणों को हल करना

इस पाठ में, हम सीखेंगे कि विभेदीकरण के सूत्रों और नियमों को कैसे लागू किया जाए।

उदाहरण। कार्यों के व्युत्पन्न खोजें।

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9। नियम लागू करना मैं, सूत्र 4, 2 और 1. हम पाते हैं:

y'=7x 6 +5x 4 -4x 3 +3x 2 -2x+1।

2. वाई=3x6 -2x+5. हम समान सूत्रों और सूत्रों का उपयोग करके समान रूप से हल करते हैं 3.

y'=3∙6x 5 -2=18x 5 -2।

नियम लागू करना मैं, सूत्र 3, 5 तथा 6 तथा 1.

नियम लागू करना चतुर्थ, सूत्र 5 तथा 1 .

पांचवें उदाहरण में, नियम के अनुसार मैंयोग का व्युत्पन्न व्युत्पन्न के योग के बराबर है, और हमने अभी पहले पद का व्युत्पन्न पाया है (उदाहरण 4 ), इसलिए, हम व्युत्पन्न पाएंगे 2तथा 3निबंधन और 1st . के लिएशब्द, हम तुरंत परिणाम लिख सकते हैं।

फर्क 2तथा 3सूत्र के अनुसार शर्तें 4 . ऐसा करने के लिए, हम हर में तीसरी और चौथी डिग्री की जड़ों को नकारात्मक घातांक वाली शक्तियों में परिवर्तित करते हैं, और फिर, के अनुसार 4 सूत्र, हम शक्तियों के व्युत्पन्न पाते हैं।

इस उदाहरण और परिणाम को देखें। क्या आपने पैटर्न पकड़ा? अच्छा। इसका मतलब है कि हमारे पास एक नया फॉर्मूला है और इसे हमारी डेरिवेटिव टेबल में जोड़ सकते हैं।

आइए छठे उदाहरण को हल करें और एक और सूत्र प्राप्त करें।

हम नियम का उपयोग करते हैं चतुर्थऔर सूत्र 4 . हम परिणामी अंशों को कम करते हैं।

हम इस फ़ंक्शन और इसके व्युत्पन्न को देखते हैं। आप, निश्चित रूप से, पैटर्न को समझ गए हैं और सूत्र का नाम देने के लिए तैयार हैं:

नए सूत्र सीखना!

उदाहरण।

1. तर्क वृद्धि और फ़ंक्शन वृद्धि खोजें y= x2यदि तर्क का प्रारंभिक मान था 4 , और नया 4,01 .

समाधान।

नया तर्क मान एक्स \u003d एक्स 0 + x. डेटा को प्रतिस्थापित करें: 4.01=4+Δx, इसलिए तर्क की वृद्धि मैं=4.01-4=0.01। किसी फ़ंक्शन की वृद्धि, परिभाषा के अनुसार, फ़ंक्शन के नए और पिछले मानों के बीच के अंतर के बराबर होती है, अर्थात। y \u003d f (x 0 + x) - f (x 0)। चूंकि हमारे पास एक फ़ंक्शन है वाई = x2, फिर у\u003d (x 0 + x) 2 - (x 0) 2 \u003d (x 0) 2 + 2x 0 · x+(Δx) 2 - (x 0) 2 \u003d 2x 0 · x+(∆x) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

उत्तर: तर्क वृद्धि मैं=0.01; समारोह वृद्धि у=0,0801.

फ़ंक्शन वृद्धि को किसी अन्य तरीके से खोजना संभव था: y\u003d y (x 0 + x) -y (x 0) \u003d y (4.01) -y (4) \u003d 4.01 2 -4 2 \u003d 16.0801-16 \u003d 0.0801।

2. फ़ंक्शन ग्राफ़ पर स्पर्शरेखा के झुकाव के कोण का पता लगाएं वाई = एफ (एक्स)बिंदु पर एक्स 0, यदि च "(एक्स 0) \u003d 1.

समाधान।

संपर्क के बिंदु पर व्युत्पन्न का मूल्य एक्स 0और स्पर्शरेखा के ढलान के स्पर्शरेखा का मान है (व्युत्पन्न का ज्यामितीय अर्थ)। हमारे पास है: f "(x 0) \u003d tgα \u003d 1 → α \u003d 45 °,इसलिये टीजी45°=1.

उत्तर: इस फ़ंक्शन के ग्राफ़ की स्पर्शरेखा, ऑक्स अक्ष की धनात्मक दिशा के साथ एक कोण बनाती है, बराबर 45°.

3. किसी फ़ंक्शन के व्युत्पन्न के लिए सूत्र प्राप्त करें वाई = एक्सएन.

भेदभावकिसी फ़ंक्शन के व्युत्पन्न को खोजने का कार्य है।

डेरिवेटिव ढूंढते समय, व्युत्पन्न की परिभाषा के आधार पर व्युत्पन्न सूत्रों का उपयोग किया जाता है, उसी तरह जैसे हमने व्युत्पन्न डिग्री के लिए सूत्र प्राप्त किया था: (एक्स एन)" = एनएक्स एन -1.

उसके सूत्र इस प्रकार हैं।

व्युत्पन्न तालिकामौखिक योगों का उच्चारण करके याद रखना आसान होगा:

1. एक स्थिर मान का व्युत्पन्न शून्य है।

2. एक्स स्ट्रोक एक के बराबर है।

3. अचर गुणनखंड को व्युत्पन्न के चिह्न से निकाला जा सकता है।

4. एक डिग्री का व्युत्पन्न एक ही आधार के साथ डिग्री द्वारा इस डिग्री के घातांक के गुणनफल के बराबर होता है, लेकिन घातांक एक कम होता है।

5. जड़ का व्युत्पन्न एक के बराबर होता है जो समान जड़ों के दो से विभाजित होता है।

6. एकता का व्युत्पत्ति x से विभाजित होता है, शून्य से एक को x वर्ग से विभाजित किया जाता है।

7. ज्या का व्युत्पन्न कोज्या के बराबर होता है।

8. कोसाइन का व्युत्पन्न ऋण साइन के बराबर है।

9. स्पर्शरेखा का व्युत्पन्न कोज्या के वर्ग द्वारा विभाजित एक के बराबर होता है।

10. कोटैंजेंट का व्युत्पन्न शून्य से एक है जिसे ज्या के वर्ग से विभाजित किया जाता है।

हम पढ़ाते हैं भेदभाव नियम.

1. बीजीय योग का व्युत्पन्न व्युत्पन्न पदों के बीजीय योग के बराबर होता है।

2. उत्पाद का व्युत्पन्न दूसरे कारक के पहले कारक के व्युत्पन्न के उत्पाद के बराबर होता है और दूसरे के व्युत्पन्न द्वारा पहले कारक के उत्पाद के बराबर होता है।

3. "y" का व्युत्पन्न "ve" से विभाजित एक अंश के बराबर होता है, जिसके अंश में "y एक स्ट्रोक है जिसे "ve" माइनस "y से गुणा किया जाता है, एक स्ट्रोक से गुणा किया जाता है", और हर में - "ve चुकता" "

4. सूत्र का एक विशेष मामला 3.

आइए एक साथ सीखें!

1 1 का पेज 1

परिभाषा।मान लें कि फ़ंक्शन \(y = f(x) \) को कुछ अंतराल में परिभाषित किया जाता है जिसमें बिंदु \(x_0 \) अंदर होता है। आइए तर्क में वृद्धि \(\Delta x \) करें ताकि इस अंतराल को न छोड़ें। फ़ंक्शन की संगत वृद्धि खोजें \(\Delta y \) (बिंदु \(x_0 \) से बिंदु \(x_0 + \Delta x \) तक जाते समय) और संबंध लिखें \(\frac(\Delta y) ) (\ डेल्टा एक्स) \)। यदि इस संबंध की सीमा \(\Delta x \rightarrow 0 \) पर है, तो निर्दिष्ट सीमा कहलाती है व्युत्पन्न कार्य\(y=f(x) \) बिंदु \(x_0 \) पर और \(f"(x_0) \) को निरूपित करें।

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

प्रतीक y अक्सर व्युत्पन्न को दर्शाने के लिए प्रयोग किया जाता है। ध्यान दें कि y" = f(x) एक नया फ़ंक्शन है, लेकिन स्वाभाविक रूप से फ़ंक्शन y = f(x) से जुड़ा हुआ है, जो सभी बिंदुओं x पर परिभाषित है जहां उपरोक्त सीमा मौजूद है। इस फ़ंक्शन को इस तरह कहा जाता है: फ़ंक्शन का व्युत्पन्न y \u003d f (x).

व्युत्पन्न का ज्यामितीय अर्थनिम्नलिखित से मिलकर बनता है। यदि एक स्पर्शरेखा जो y अक्ष के समानांतर नहीं है, को फ़ंक्शन y \u003d f (x) के एक बिंदु पर भुज x \u003d a के साथ खींचा जा सकता है, तो f (a) स्पर्शरेखा के ढलान को व्यक्त करता है:
\(के = एफ"(ए)\)

चूँकि \(k = tg(a) \), समानता \(f"(a) = tg(a) \) सत्य है।

और अब हम व्युत्पन्न की परिभाषा की व्याख्या सन्निकट समानता के रूप में करते हैं। मान लें कि फलन \(y = f(x) \) का एक विशेष बिंदु \(x \) पर एक अवकलज है:
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
इसका मतलब है कि बिंदु x के पास, अनुमानित समानता \(\frac(\Delta y)(\Delta x) \approx f"(x) \), यानी \(\Delta y \approx f"(x) \cdot \Deltax\)। प्राप्त अनुमानित समानता का सार्थक अर्थ इस प्रकार है: फ़ंक्शन की वृद्धि तर्क की वृद्धि के लिए "लगभग आनुपातिक" है, और आनुपातिकता का गुणांक किसी दिए गए बिंदु x पर व्युत्पन्न का मान है। उदाहरण के लिए, फ़ंक्शन \(y = x^2 \) के लिए अनुमानित समानता \(\Delta y \लगभग 2x \cdot \Delta x \) मान्य है। यदि हम व्युत्पन्न की परिभाषा का ध्यानपूर्वक विश्लेषण करते हैं, तो हम पाएंगे कि इसमें इसे खोजने के लिए एक एल्गोरिथम शामिल है।

आइए इसे तैयार करें।

फ़ंक्शन y \u003d f (x) का व्युत्पन्न कैसे खोजें?

1. मान स्थिर करें \(x \), \(f(x) \) खोजें
2. वृद्धि \(x \) तर्क \(\Delta x \), एक नए बिंदु \(x+ \Delta x \) पर जाएं, \(f(x+ \Delta x) \) खोजें
3. फलन वृद्धि ज्ञात कीजिए: \(\Delta y = f(x + \Delta x) - f(x) \)
4. संबंध लिखें \(\frac(\Delta y)(\Delta x) \)
5. $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$ की गणना करें
यह सीमा x पर फलन का अवकलज है।

यदि फलन y = f(x) का व्युत्पन्न बिंदु x पर है, तो इसे बिंदु x पर अवकलनीय कहा जाता है। फ़ंक्शन y \u003d f (x) के व्युत्पन्न को खोजने की प्रक्रिया को कहा जाता है भेदभावफलन y = f(x)।

आइए हम निम्नलिखित प्रश्न पर चर्चा करें: एक बिंदु पर एक फलन की निरंतरता और भिन्नता कैसे संबंधित हैं?

मान लीजिए फलन y = f(x) बिंदु x पर अवकलनीय है। फिर बिंदु M (x; f (x)) पर फ़ंक्शन के ग्राफ़ पर एक स्पर्शरेखा खींची जा सकती है और, याद रखें, स्पर्शरेखा का ढलान f "(x) के बराबर है। ऐसा ग्राफ "टूट" नहीं सकता है बिंदु M, अर्थात् फलन x पर सतत होना चाहिए।

यह "उंगलियों पर" तर्क कर रहा था। आइए हम एक और कठोर तर्क प्रस्तुत करें। यदि फलन y = f(x) बिंदु x पर अवकलनीय है, तो सन्निकट समानता \(\Delta y \approx f"(x) \cdot \Delta x \) शून्य है, फिर \(\Delta y \ ) भी शून्य हो जाएगा, और यह एक बिंदु पर फ़ंक्शन की निरंतरता के लिए शर्त है।

इसलिए, यदि कोई फलन बिंदु x पर अवकलनीय है, तो वह उस बिंदु पर भी सतत होता है.

इसका उलट सत्य नहीं है। उदाहरण के लिए: फ़ंक्शन y = |x| हर जगह निरंतर है, विशेष रूप से बिंदु x = 0 पर, लेकिन "संयुक्त बिंदु" (0; 0) पर फ़ंक्शन के ग्राफ़ की स्पर्शरेखा मौजूद नहीं है। यदि किसी बिंदु पर किसी फ़ंक्शन के ग्राफ़ पर स्पर्शरेखा खींचना असंभव है, तो इस बिंदु पर कोई व्युत्पन्न नहीं है।

एक और उदाहरण। फ़ंक्शन \(y=\sqrt(x) \) बिंदु x = 0 सहित संपूर्ण संख्या रेखा पर निरंतर है। और फ़ंक्शन के ग्राफ़ की स्पर्शरेखा बिंदु x = 0 सहित किसी भी बिंदु पर मौजूद है। । लेकिन इस बिंदु पर स्पर्शरेखा y-अक्ष के साथ मेल खाती है, अर्थात यह भुज अक्ष के लंबवत है, इसके समीकरण का रूप x \u003d 0 है। ऐसी सीधी रेखा के लिए कोई ढलान नहीं है, जिसका अर्थ है कि \ ( f "(0) \) या तो मौजूद नहीं है

इस प्रकार, हम एक फलन के एक नए गुण - अवकलनीयता से परिचित हुए। आप कैसे बता सकते हैं कि कोई फ़ंक्शन किसी फ़ंक्शन के ग्राफ़ से भिन्न है या नहीं?

उत्तर वास्तव में ऊपर दिया गया है। यदि किसी बिंदु पर किसी फ़ंक्शन के ग्राफ़ पर एक स्पर्शरेखा खींची जा सकती है जो x-अक्ष के लंबवत नहीं है, तो इस बिंदु पर फ़ंक्शन भिन्न होता है। यदि किसी बिंदु पर फ़ंक्शन के ग्राफ़ की स्पर्शरेखा मौजूद नहीं है या यह x-अक्ष के लंबवत है, तो इस बिंदु पर फ़ंक्शन अवकलनीय नहीं है।

विभेदन नियम

अवकलज ज्ञात करने की क्रिया कहलाती है भेदभाव. इस ऑपरेशन को करते समय, आपको अक्सर भागफल, योग, कार्यों के उत्पादों के साथ-साथ "फ़ंक्शन ऑफ़ फ़ंक्शंस", यानी जटिल फ़ंक्शंस के साथ काम करना पड़ता है। व्युत्पन्न की परिभाषा के आधार पर, हम इस कार्य को सुविधाजनक बनाने वाले विभेदन नियम प्राप्त कर सकते हैं। यदि सी एक स्थिर संख्या है और f=f(x), g=g(x) कुछ अलग-अलग कार्य हैं, तो निम्नलिखित सत्य हैं भेदभाव नियम:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) "= \frac(f"g-fg")(g^2) $$$$ \left(\frac) (C)(g) \right) "= -\frac(Cg")(g^2) $$ कंपाउंड फंक्शन डेरिवेटिव:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

कुछ कार्यों के डेरिवेटिव की तालिका

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) "= a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \बाएं(ई^x \दाएं) " = ई^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) "= \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) "= \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arctg) x)" = \frac(-1)(1+x^2) $ $

व्युत्पन्न और इसकी गणना के तरीकों के बारे में ज्ञान के बिना गणित में भौतिक समस्याओं या उदाहरणों को हल करना बिल्कुल असंभव है। व्युत्पन्न में से एक है सबसे महत्वपूर्ण अवधारणाएंगणितीय विश्लेषण। हमने आज के लेख को इस मौलिक विषय पर समर्पित करने का निर्णय लिया। व्युत्पन्न क्या है, इसका भौतिक और ज्यामितीय अर्थ क्या है, किसी फ़ंक्शन के व्युत्पन्न की गणना कैसे करें? इन सभी प्रश्नों को एक में जोड़ा जा सकता है: व्युत्पन्न को कैसे समझें?

व्युत्पन्न का ज्यामितीय और भौतिक अर्थ

एक समारोह होने दें एफ (एक्स) , कुछ अंतराल में दिया गया (ए, बी) . बिंदु x और x0 इसी अंतराल के हैं। जब x बदलता है, तो फ़ंक्शन स्वयं बदल जाता है। तर्क परिवर्तन - इसके मूल्यों का अंतर x-x0 . यह अंतर इस प्रकार लिखा जाता है डेल्टा x और तर्क वृद्धि कहा जाता है। किसी फ़ंक्शन का परिवर्तन या वृद्धि दो बिंदुओं पर फ़ंक्शन के मानों के बीच का अंतर है। व्युत्पन्न परिभाषा:

किसी बिंदु पर किसी फ़ंक्शन का व्युत्पन्न किसी दिए गए बिंदु पर फ़ंक्शन की वृद्धि के अनुपात की सीमा है जब तर्क की वृद्धि शून्य हो जाती है।

अन्यथा इसे इस प्रकार लिखा जा सकता है:

ऐसी सीमा खोजने का क्या मतलब है? पर कौनसा:

किसी बिंदु पर किसी फलन का अवकलज OX अक्ष के बीच के कोण की स्पर्शरेखा और दिए गए बिंदु पर फलन के ग्राफ़ की स्पर्शरेखा के बराबर होता है।


व्युत्पन्न का भौतिक अर्थ: पथ का समय व्युत्पन्न सरल रेखीय गति की गति के बराबर होता है।

दरअसल, स्कूल के दिनों से ही सभी जानते हैं कि गति एक निजी रास्ता है। एक्स = एफ (टी) और समय टी . औसत गतिकुछ समय के लिए:

एक बार में गति की गति का पता लगाने के लिए t0 आपको सीमा की गणना करने की आवश्यकता है:

नियम एक: स्थिरांक निकालें

स्थिरांक को व्युत्पन्न के चिन्ह से निकाला जा सकता है। इसके अलावा, यह किया जाना चाहिए। गणित में उदाहरण हल करते समय, एक नियम के रूप में लें - यदि आप व्यंजक को सरल बना सकते हैं, तो सरल करना सुनिश्चित करें .

उदाहरण। आइए व्युत्पन्न की गणना करें:

नियम दो: कार्यों के योग का व्युत्पन्न

दो कार्यों के योग का व्युत्पन्न इन कार्यों के व्युत्पन्न के योग के बराबर है। कार्यों के अंतर के व्युत्पन्न के लिए भी यही सच है।

हम इस प्रमेय का प्रमाण नहीं देंगे, बल्कि एक व्यावहारिक उदाहरण पर विचार करेंगे।

किसी फ़ंक्शन के व्युत्पन्न का पता लगाएं:

नियम तीन: कार्यों के उत्पाद का व्युत्पन्न

दो अलग-अलग कार्यों के उत्पाद के व्युत्पन्न की गणना सूत्र द्वारा की जाती है:

उदाहरण: किसी फ़ंक्शन का व्युत्पन्न खोजें:

समाधान:

यहां जटिल कार्यों के डेरिवेटिव की गणना के बारे में कहना महत्वपूर्ण है। स्वतंत्र चर के संबंध में मध्यवर्ती तर्क के व्युत्पन्न द्वारा मध्यवर्ती तर्क के संबंध में एक जटिल फ़ंक्शन का व्युत्पन्न इस फ़ंक्शन के व्युत्पन्न के उत्पाद के बराबर है।

उपरोक्त उदाहरण में, हम अभिव्यक्ति का सामना करते हैं:

इस मामले में, मध्यवर्ती तर्क पांचवीं शक्ति के लिए 8x है। ऐसी अभिव्यक्ति के व्युत्पन्न की गणना करने के लिए, हम पहले मध्यवर्ती तर्क के संबंध में बाहरी फ़ंक्शन के व्युत्पन्न पर विचार करते हैं, और फिर स्वतंत्र चर के संबंध में मध्यवर्ती तर्क के व्युत्पन्न से गुणा करते हैं।

नियम चार: दो कार्यों के भागफल का व्युत्पन्न

दो कार्यों के भागफल के व्युत्पन्न को निर्धारित करने का सूत्र:

हमने शुरुआत से डमी के लिए डेरिवेटिव के बारे में बात करने की कोशिश की। यह विषय उतना सरल नहीं है जितना लगता है, इसलिए सावधान रहें: उदाहरणों में अक्सर नुकसान होते हैं, इसलिए डेरिवेटिव की गणना करते समय सावधान रहें।

इस और अन्य विषयों पर किसी भी प्रश्न के लिए, आप छात्र सेवा से संपर्क कर सकते हैं। थोड़े समय में, हम आपको सबसे कठिन नियंत्रण को हल करने और कार्यों से निपटने में मदद करेंगे, भले ही आपने पहले कभी डेरिवेटिव की गणना नहीं की हो।

नमस्कार प्रिय पाठकों। लेख पढ़ने के बाद, आपके पास शायद एक तार्किक प्रश्न होगा: "वास्तव में, यह क्यों आवश्यक है?"। इस कारण से, मैं पहले यह सूचित करना आवश्यक समझता हूं कि द्विघात समीकरणों को हल करने की वांछित विधि व्यावहारिक शुष्क अनुप्रयोग की तुलना में गणित के नैतिक और सौंदर्य पक्ष से अधिक प्रस्तुत की जाती है। मैं उन पाठकों से भी अग्रिम रूप से माफी मांगता हूं, जिन्हें मेरी शौकिया बातें अस्वीकार्य लगती हैं। तो, आइए माइक्रोस्कोप से नाखूनों पर हथौड़ा मारना शुरू करें।

हमारे पास सामान्य रूप में दूसरी डिग्री (यह भी द्विघात है) का बीजीय समीकरण है:

आइए द्विघात समीकरण से द्विघात फलन की ओर बढ़ते हैं:

जहां, जाहिर है, फ़ंक्शन तर्क के ऐसे मूल्यों को खोजना आवश्यक है जिसमें यह शून्य लौटाएगा।

ऐसा लगता है कि विएटा के प्रमेय का उपयोग करके या विवेचक के माध्यम से द्विघात समीकरण को हल करना है। लेकिन हम यहां इसलिए नहीं हैं। चलो व्युत्पन्न लेते हैं!

प्रथम-क्रम व्युत्पन्न के भौतिक अर्थ की परिभाषा के आधार पर, यह स्पष्ट है कि ऊपर प्राप्त फ़ंक्शन में तर्क को प्रतिस्थापित करके, हम (विशेष रूप से) प्राप्त करते हैं रफ़्तारइस तर्क द्वारा दिए गए बिंदु पर कार्य बदलता है।

इस बार हमें फ़ंक्शन परिवर्तन की "गति की दर" मिली (अर्थात। त्वरण) एक विशेष बिंदु पर। परिणाम का थोड़ा विश्लेषण करने के बाद, हम यह निष्कर्ष निकाल सकते हैं कि "त्वरण" एक स्थिरांक है जो फ़ंक्शन तर्क पर निर्भर नहीं करता है - इसे याद रखें।

अब थोड़ा भौतिकी और समान रूप से त्वरित गति (RUD) को याद करते हैं। हमारे शस्त्रागार में हमारे पास क्या है? यह सही है, वांछित आंदोलन के दौरान अक्ष के साथ आंदोलन के समन्वय को निर्धारित करने के लिए एक सूत्र है:

कहाँ - समय, - प्रारंभिक गति, - त्वरण।
यह देखना आसान है कि हमारा मूल कार्य सिर्फ एक RUD है।

क्या थ्रॉटल के लिए विस्थापन सूत्र द्विघात समीकरण को हल करने का परिणाम नहीं है?

नहीं। उपरोक्त थ्रॉटल का सूत्र वास्तव में पीओआरडी के लिए गति सूत्र का अभिन्न अंग लेने का परिणाम है। या ग्राफ से आप आकृति का क्षेत्रफल ज्ञात कर सकते हैं। एक ट्रेपोजॉइड निकलेगा।
गला घोंटना के लिए विस्थापन सूत्र किसी भी द्विघात समीकरणों के समाधान का पालन नहीं करता है। यह बहुत महत्वपूर्ण है, अन्यथा लेख का कोई मतलब नहीं होगा।


अब यह पता लगाना बाकी है कि क्या है और हम क्या खो रहे हैं।

हमारे पास पहले से ही "त्वरण" है - यह ऊपर व्युत्पन्न दूसरा क्रम व्युत्पन्न है। लेकिन प्रारंभिक गति प्राप्त करने के लिए, हमें सामान्य रूप से, कोई भी (चलो इसे इस रूप में निरूपित करते हैं) लेने की आवश्यकता है और इसे पहले क्रम के व्युत्पन्न में प्रतिस्थापित करें - क्योंकि यह वांछित होगा।

ऐसे में सवाल उठता है कि किसे लेना चाहिए? जाहिर है, प्रारंभिक गति शून्य के बराबर है, ताकि "थ्रॉटल पर विस्थापन" का सूत्र बन जाए:

इस मामले में, हम खोज के लिए एक समीकरण बनाते हैं:

[पहले आदेश के व्युत्पन्न में प्रतिस्थापित]

के संबंध में ऐसे समीकरण का मूल होगा:

और इस तरह के तर्क के साथ मूल फ़ंक्शन का मान होगा:

अब यह स्पष्ट हो जाता है कि:

पहेली के सभी टुकड़ों को एक साथ रखकर:

यहां हमारे पास समस्या का अंतिम समाधान है। सामान्य तौर पर, हमने अमेरिका की खोज नहीं की - हम बस एक चौराहे के तरीके से विवेचक के माध्यम से एक द्विघात समीकरण को हल करने के सूत्र पर आए। इसका कोई व्यावहारिक अर्थ नहीं है (लगभग उसी तरह, कोई भी किसी भी (जरूरी नहीं कि सामान्य) रूप की पहली / दूसरी डिग्री के समीकरणों को हल कर सकता है)।

इस लेख का उद्देश्य, विशेष रूप से, चटाई के विश्लेषण में रुचि जगाना है। सामान्य रूप से कार्य और गणित।

पीटर आपके साथ था, आपका ध्यान देने के लिए धन्यवाद!

अवकलज ज्ञात करने की क्रिया को विभेदन कहते हैं।

तर्क की वृद्धि के अनुपात की सीमा के रूप में व्युत्पन्न को परिभाषित करके सबसे सरल (और बहुत सरल नहीं) कार्यों के डेरिवेटिव खोजने की समस्याओं को हल करने के परिणामस्वरूप, डेरिवेटिव की एक तालिका और भेदभाव के सटीक परिभाषित नियम दिखाई दिए . आइजैक न्यूटन (1643-1727) और गॉटफ्राइड विल्हेम लिबनिज़ (1646-1716) ने डेरिवेटिव खोजने के क्षेत्र में काम करने वाले पहले व्यक्ति थे।

इसलिए, हमारे समय में, किसी भी फ़ंक्शन के व्युत्पन्न को खोजने के लिए, फ़ंक्शन की वृद्धि के अनुपात की उपर्युक्त सीमा की गणना तर्क की वृद्धि के लिए करना आवश्यक नहीं है, लेकिन केवल तालिका का उपयोग करने की आवश्यकता है डेरिवेटिव और भेदभाव के नियम। निम्नलिखित एल्गोरिदम व्युत्पन्न खोजने के लिए उपयुक्त है।

व्युत्पन्न खोजने के लिए, आपको स्ट्रोक साइन के तहत एक अभिव्यक्ति की आवश्यकता है सरल कार्यों को तोड़ोऔर निर्धारित करें कि क्या कार्रवाई (उत्पाद, योग, भागफल)ये कार्य संबंधित हैं। इसके अलावा, हम डेरिवेटिव की तालिका में प्राथमिक कार्यों के व्युत्पन्न पाते हैं, और उत्पाद, योग और भागफल के डेरिवेटिव के लिए सूत्र - भेदभाव के नियमों में। पहले दो उदाहरणों के बाद व्युत्पन्न और विभेदन नियमों की तालिका दी गई है।

उदाहरण 1किसी फ़ंक्शन का व्युत्पन्न खोजें

समाधान। विभेदन के नियमों से हम पाते हैं कि कार्यों के योग का व्युत्पन्न कार्यों के व्युत्पन्न का योग है, अर्थात।

डेरिवेटिव की तालिका से, हम पाते हैं कि "X" का व्युत्पन्न एक के बराबर है, और साइन का व्युत्पन्न कोसाइन के बराबर है। हम इन मानों को व्युत्पन्न के योग में प्रतिस्थापित करते हैं और समस्या की स्थिति के लिए आवश्यक व्युत्पन्न पाते हैं:

उदाहरण 2किसी फ़ंक्शन का व्युत्पन्न खोजें

समाधान। योग के व्युत्पन्न के रूप में अंतर करें, जिसमें एक स्थिर कारक के साथ दूसरा पद, इसे व्युत्पन्न के संकेत से निकाला जा सकता है:

यदि अभी भी प्रश्न हैं कि कुछ कहाँ से आता है, तो वे, एक नियम के रूप में, डेरिवेटिव की तालिका और भेदभाव के सबसे सरल नियमों को पढ़ने के बाद स्पष्ट हो जाते हैं। हम अभी उनके पास जा रहे हैं।

सरल कार्यों के डेरिवेटिव की तालिका

1. एक स्थिरांक (संख्या) का व्युत्पन्न। कोई भी संख्या (1, 2, 5, 200...) जो फलन व्यंजक में है। हमेशा शून्य। यह याद रखना बहुत महत्वपूर्ण है, क्योंकि इसकी बहुत बार आवश्यकता होती है
2. स्वतंत्र चर का व्युत्पन्न। सबसे अधिक बार "एक्स"। हमेशा एक के बराबर। यह भी याद रखना जरूरी है
3. डिग्री का व्युत्पन्न। समस्याओं को हल करते समय, आपको गैर-वर्गमूलों को एक शक्ति में बदलने की आवश्यकता होती है।
4. -1 . की घात के लिए एक चर का व्युत्पन्न
5. व्युत्पन्न वर्गमूल
6. साइन व्युत्पन्न
7. कोसाइन व्युत्पन्न
8. स्पर्शरेखा व्युत्पन्न
9. कोटैंजेंट का व्युत्पन्न
10. आर्क्सिन का व्युत्पन्न
11. चाप कोज्या का व्युत्पन्न
12. चाप स्पर्शरेखा का व्युत्पन्न
13. व्युत्क्रम स्पर्शरेखा का व्युत्पन्न
14. प्राकृतिक लघुगणक का व्युत्पन्न
15. एक लघुगणकीय फलन का व्युत्पन्न
16. घातांक का व्युत्पन्न
17. घातीय फलन का व्युत्पन्न

विभेदन नियम

1. योग या अंतर का व्युत्पन्न
2. उत्पाद का व्युत्पन्न
2ए. एक स्थिर कारक से गुणा किए गए व्यंजक का व्युत्पन्न
3. भागफल का व्युत्पन्न
4. एक जटिल कार्य का व्युत्पन्न

नियम 1यदि कार्य

किसी बिंदु पर भिन्न होते हैं, फिर उसी बिंदु पर कार्य

तथा

वे। फलनों के बीजीय योग का अवकलज इन फलनों के व्युत्पन्नों के बीजगणितीय योग के बराबर होता है।

परिणाम। यदि दो अवकलनीय फलन एक नियतांक से भिन्न होते हैं, तो उनके अवकलज हैं, अर्थात।

नियम 2यदि कार्य

किसी बिंदु पर अवकलनीय होते हैं, तो उनका गुणनफल भी उसी बिंदु पर अवकलनीय होता है

तथा

वे। दो कार्यों के उत्पाद का व्युत्पन्न इन कार्यों में से प्रत्येक के उत्पादों के योग और दूसरे के व्युत्पन्न के बराबर है।

परिणाम 1. अचर गुणनखंड को अवकलज के चिह्न से निकाला जा सकता है:

परिणाम 2. कई अलग-अलग कार्यों के उत्पाद का व्युत्पन्न प्रत्येक कारक और अन्य सभी के व्युत्पन्न के उत्पादों के योग के बराबर होता है।

उदाहरण के लिए, तीन गुणकों के लिए:

नियम 3यदि कार्य

किसी बिंदु पर अलग-अलग तथा , तो इस बिंदु पर उनका भागफल भी अवकलनीय है।यू/वी, और

वे। दो कार्यों के भागफल का व्युत्पन्न एक अंश के बराबर होता है जिसका अंश हर के उत्पादों और अंश और अंश के व्युत्पन्न और हर के व्युत्पन्न के बीच का अंतर होता है, और हर पूर्व अंश का वर्ग होता है .

अन्य पृष्ठों पर कहां देखें

वास्तविक समस्याओं में उत्पाद के व्युत्पन्न और भागफल को खोजने पर, एक साथ कई भेदभाव नियम लागू करना हमेशा आवश्यक होता है, इसलिए इन डेरिवेटिव पर अधिक उदाहरण लेख में हैं।"एक उत्पाद और एक भागफल का व्युत्पन्न".

टिप्पणी।आपको एक स्थिरांक (अर्थात एक संख्या) को योग में एक पद के रूप में और एक स्थिर गुणनखंड के रूप में भ्रमित नहीं करना चाहिए! एक पद के मामले में, इसका व्युत्पन्न शून्य के बराबर होता है, और एक स्थिर कारक के मामले में, इसे व्युत्पन्न के चिह्न से निकाल दिया जाता है। यह एक विशिष्ट त्रुटि है जो इसमें होती है आरंभिक चरणव्युत्पन्न सीखना, लेकिन जैसे ही वे कई एक-दो-घटक उदाहरणों को हल करते हैं, औसत छात्र अब यह गलती नहीं करता है।

और यदि, किसी उत्पाद या भागफल में अंतर करते समय, आपके पास एक पद है तुम"वी, जिसमें तुम- एक संख्या, उदाहरण के लिए, 2 या 5, यानी एक स्थिर, तो इस संख्या का व्युत्पन्न शून्य के बराबर होगा और इसलिए, पूरा पद शून्य के बराबर होगा (ऐसे मामले का विश्लेषण उदाहरण 10 में किया गया है) .

एक अन्य सामान्य गलती एक साधारण फ़ंक्शन के व्युत्पन्न के रूप में एक जटिल फ़ंक्शन के व्युत्पन्न का यांत्रिक समाधान है। इसीलिए एक जटिल कार्य का व्युत्पन्नएक अलग लेख के लिए समर्पित। लेकिन पहले हम सरल फलनों के अवकलज ज्ञात करना सीखेंगे।

साथ ही, आप भावों के परिवर्तन के बिना नहीं कर सकते। ऐसा करने के लिए, आपको नए विंडोज़ मैनुअल में खोलने की आवश्यकता हो सकती है शक्तियों और जड़ों के साथ क्रियातथा भिन्न के साथ क्रिया .

यदि आप शक्तियों और जड़ों के साथ डेरिवेटिव के समाधान की तलाश में हैं, यानी, जब फ़ंक्शन जैसा दिखता है , फिर पाठ का पालन करें " शक्तियों और जड़ों के साथ अंशों के योग का व्युत्पन्न"।

यदि आपके पास कोई कार्य है जैसे , तो आप "सरल त्रिकोणमितीय फलनों के व्युत्पन्न" पाठ में हैं।

चरण-दर-चरण उदाहरण - व्युत्पन्न कैसे खोजें

उदाहरण 3किसी फ़ंक्शन का व्युत्पन्न खोजें

समाधान। हम फ़ंक्शन की अभिव्यक्ति के कुछ हिस्सों को निर्धारित करते हैं: संपूर्ण अभिव्यक्ति उत्पाद का प्रतिनिधित्व करती है, और इसके कारक योग होते हैं, जिनमें से दूसरे शब्दों में से एक में एक स्थिर कारक होता है। हम उत्पाद भेदभाव नियम लागू करते हैं: दो कार्यों के उत्पाद का व्युत्पन्न इन कार्यों में से प्रत्येक के उत्पादों के योग और दूसरे के व्युत्पन्न के बराबर है:

इसके बाद, हम योग के विभेदन के नियम को लागू करते हैं: कार्यों के बीजीय योग का व्युत्पन्न इन कार्यों के व्युत्पन्न के बीजीय योग के बराबर होता है। हमारे मामले में, प्रत्येक योग में, दूसरा पद एक ऋण चिह्न के साथ। प्रत्येक योग में, हम दोनों एक स्वतंत्र चर देखते हैं, जिसका व्युत्पन्न एक के बराबर होता है, और एक स्थिरांक (संख्या), जिसका व्युत्पन्न शून्य के बराबर होता है। तो, "x" एक में बदल जाता है, और माइनस 5 - शून्य में। दूसरे व्यंजक में, "x" को 2 से गुणा किया जाता है, इसलिए हम "x" के अवकलज के समान इकाई से दो गुणा करते हैं। हमें डेरिवेटिव के निम्नलिखित मूल्य मिलते हैं:

हम पाए गए डेरिवेटिव को उत्पादों के योग में प्रतिस्थापित करते हैं और समस्या की स्थिति के लिए आवश्यक संपूर्ण फ़ंक्शन का व्युत्पन्न प्राप्त करते हैं:

उदाहरण 4किसी फ़ंक्शन का व्युत्पन्न खोजें

समाधान। हमें भागफल का अवकलज ज्ञात करना है। हम एक भागफल को अलग करने के लिए सूत्र लागू करते हैं: दो कार्यों के भागफल का व्युत्पन्न एक अंश के बराबर होता है जिसका अंश हर के उत्पादों और अंश और अंश के व्युत्पन्न और हर के व्युत्पन्न के बीच का अंतर होता है, और भाजक पूर्व अंश का वर्ग है। हम पाते हैं:

हम पहले ही उदाहरण 2 में अंश में कारकों का व्युत्पन्न पा चुके हैं। आइए यह भी न भूलें कि उत्पाद, जो वर्तमान उदाहरण में अंश में दूसरा कारक है, को ऋण चिह्न के साथ लिया गया है:

यदि आप ऐसी समस्याओं के समाधान की तलाश में हैं जिनमें आपको किसी फ़ंक्शन के व्युत्पन्न को खोजने की आवश्यकता है, जहां जड़ों और डिग्री का निरंतर ढेर होता है, जैसे कि, उदाहरण के लिए, फिर कक्षा में स्वागत है "शक्तियों और जड़ों के साथ अंशों के योग का व्युत्पन्न" .

यदि आपको ज्या, कोसाइन, स्पर्शरेखा और अन्य त्रिकोणमितीय फलनों के व्युत्पन्नों के बारे में अधिक जानने की आवश्यकता है, अर्थात, जब फ़ंक्शन ऐसा दिखता है , तो आपके पास एक सबक है "सरल त्रिकोणमितीय कार्यों के डेरिवेटिव" .

उदाहरण 5किसी फ़ंक्शन का व्युत्पन्न खोजें

समाधान। इस फ़ंक्शन में, हम एक उत्पाद देखते हैं, जिनमें से एक कारक स्वतंत्र चर का वर्गमूल है, जिसके व्युत्पन्न के साथ हमने खुद को डेरिवेटिव की तालिका में परिचित किया है। उत्पाद विभेदन नियम और वर्गमूल के व्युत्पन्न के सारणीबद्ध मान के अनुसार, हम प्राप्त करते हैं:

उदाहरण 6किसी फ़ंक्शन का व्युत्पन्न खोजें

समाधान। इस फलन में, हम भागफल देखते हैं, जिसका लाभांश स्वतंत्र चर का वर्गमूल होता है। भागफल के विभेदन के नियम के अनुसार, जिसे हमने उदाहरण 4 में दोहराया और लागू किया, और वर्गमूल के व्युत्पन्न का सारणीबद्ध मान, हम प्राप्त करते हैं:

अंश में भिन्न से छुटकारा पाने के लिए अंश और हर को से गुणा करें।