Дробные рациональные неравенства. Некоторые рекомендации к решению рациональных неравенств

С помощью данного урока вы узнаете о рациональных неравенствах и их системах. Решается система рациональных неравенств с помощью эквивалентных преобразований. Рассматривается определение эквивалентности, способ замены дробно-рационального неравенства - квадратным,а также разбирается в чем отличие неравенства от уравнения и как осуществляются равносильные преобразования.

Алгебра 9 класс

Итоговое повторение курса алгебры 9-го класса

Рациональные неравенства и их системы. Системы рациональных неравенств.

1.1 Конспект.

1. Эквивалентные преобразования рациональных неравенств.

Решить рациональное неравенство означает – найти все его решения. В отличии от уравнения, при решении неравенства, как правило, возникает бесчисленное множество решений. Бесчисленное множество решений нельзя проверить методом подстановки. Поэтому, нужно так преобразовывать исходное неравенство, чтобы в каждой следующей строчке получалось неравенство с тем же множеством решений.

Рациональные неравенства решаются только с помощью эквивалентных или равносильных преобразований. Такие преобразования не искажают множество решений.

Определение . Рациональные неравенства называют эквивалентными , если множества их решений совпадают.

Для обозначения эквивалентности используют знак

2. Решение системы неравенств

Первое и второе неравенство – это дробно-рациональные неравенства. Методы их решения являются естественным продолжением методов решения линейных и квадратных неравенств.

Перенесем числа, стоящие в правой части, в левую с противоположным знаком.

В итоге в правой части останется 0. Это преобразование является эквивалентным. На это указывает знак

Выполним действия, которые предписывает алгебра. Вычтем «1» в первом неравенстве и «2» во втором.

3. Решение неравенства методом интервалов

1) Введем функцию. Нам нужно узнать, когда эта функция меньше 0.

2) Найдем область определения функции: в знаменателе не должен стоять 0. «2» - точка разрыва. При х=2 функция неопределенна.

3) Найдем корни функции. Функция равна 0,если в числителе стоит 0.

Поставленные точки разбивают числовую ось на три интервала – это интервалы знакопостоянства. На каждом интервале функция сохраняет знак. Определим знак на первом интервале. Подставим какое-нибудь значение. Например, 100. Ясно, что и числитель, и знаменатель больше 0. Значит и вся дробь положительна.

Определим знаки на остальных промежутках. При переходе через точку х=2 только знаменатель меняет знак. Значит, и вся дробь поменяет знак, и будет отрицательной. Проведем аналогичное рассуждение. При переходе через точку х=-3 только числитель меняет знак. Значит, дробь поменяет знак и будет положительной.

Выберем интервал соответствующий условию неравенства. Заштрихуем его и запишем в виде неравенства

4. Решение неравенства с помощью квадратичного неравенства

Важный факт.

При сравнении с 0 (в случае строгого неравенства) дробь можно заменить на произведение числителя на знаменатель или поменять числитель или знаменатель местами.

Это так, потому, что все три неравенства выполняются при условии, что u и v разного знака. Эти три неравенства эквивалентны.

Используем это факт и заменим дробно-рациональное неравенство квадратным.

Решим квадратное неравенство.

Введем квадратичную функцию. Найдем ее корни и построим эскиз ее графика.

Значит, ветви параболы вверх. Внутри интервала корней функция сохраняет знак. Она отрицательна.

Вне интервала корней функция положительна.

Решение первого неравенства:

5. Решение неравенства

Введем функцию:

Найдем ее интервалы знакопостоянства:

Для этого найдем корни и точки разрыва области определения функции. Точки разрыва выкалываем всегда. (х=3/2) Корни выкалываем в зависимости от знака неравенства. Наше неравенство строгое. Поэтому корень выкалываем.

Расставим знаки:

Запишем решение:

Закончим решение системы. Найдем пересечение множества решений первого неравенства и множества решений второго неравенства.

Решить систему неравенств означает найти пересечение множества решений первого неравенства и множества решений второго неравенства. Поэтому, решив первое и второе неравенство по отдельности нужно записать полученные результаты в одну систему.

Изобразим решение первого неравенства над осью Ох.

>>Математика:Рациональные неравенства

Рациональное неравенство с одной переменной х - это неравенство вида - рациональные выражения, т.е. алгебраические выражения, составленные из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в натуральную степень . Разумеется, переменная может быть обозначена любой другой буквой, но в математике чаще всего предпочтение отдается букве х.

При решении рациональных неравенств используются те три правила, которые были сформулированы выше в § 1. С помощью этих правил обычно преобразуют заданное рациональное неравенство к виду / (ж) > 0, где / (х) - алгебраическая дробь (или многочлен). Далее разлагают числитель и знаменатель дроби f (х) на множители вида х - а (если, конечно, это возможно) и применяют метод интервалов, который мы уже упоминали выше (см. в предыдущем параграфе пример 3).

Пример 1. Решить неравенство (х - 1) (х + 1) (х - 2) > 0.

Решение. Рассмотрим выражение f(х) = (х-1)(х + 1)(х-2).

Оно обращается в 0 в точках 1,-1,2; отметим эти точки на числовой прямой. Числовая прямая разбивается указанными точками на четыре промежутка (рис. 6), на каждом из которых выражение f (x) сохраняет постоянный знак. Чтобы в этом убедиться, проведем четыре рассуждения (для каждого из указанных промежутков в отдельности).

Возьмем любую точку х из промежутка (2, Эта точка расположена на числовой прямой правее точки -1, правее точки 1 и правее точки 2. Это значит, что х > -1, х >1, х > 2 (рис. 7). Но тогда x-1>0, х+1>0, х - 2 > 0, а значит, и f (х) > 0 (как произведение рациональное неравенство трех положительных чисел). Итак, на всем промежутке выполняется неравенство f (x) > 0.


Возьмем любую точку х из интервала (1,2). Эта точка расположена на числовой прямой правее точки-1, правее точки 1, но левее точки 2. Значит, х > -1, х > 1, но х < 2 (рис. 8), а потому x + 1>0,x-1>0,x-2<0. Но тогда f(x) <0 (как произведение двух положительных и одного отрицательного числа). Итак, на промежутке (1,2) выполняется неравенство f (x) < 0.


Возьмем любую точку х из интервала (-1,1). Эта точка расположена на числовой прямой правее точки -1, левее точки 1 и левее точки 2. Значит, х >-1, но х< 1, х <2 (рис. 9), а потому х + 1 > 0, х -1 <0, х - 2 < 0. Но тогда f (x) > 0 (как произведение двух отрицательных и одного положительного числа). Итак, на промежутке (-1,1) выполняется неравенство f (x)> 0.


Возьмем, наконец, любую точку х из открытого луча (-оо, -1). Эта точка расположена на числовой прямой левее точки -1, левее точки 1 и левее точки 2. Это значит, что x<-1, х< 1, х<2 (рис. 10). Но тогда x - 1 < 0, x + 1 < 0, х - 2 < 0, а значит, и f (x) < 0 (как произведение трех отрицательных чисел). Итак, на всем промежутке (-оо, -1) выполняется неравенство f (x) < 0.


Подведем итоги. Знаки выражения f (x) в выделенных промежутках таковы, как показано на рис. 11. Нас интересуют те из них, на которых выполняется неравенство f (x) > 0. С помощью геометрической модели , представленной на рис. 11, устанавливаем, что неравенство f (x) > 0 выполняется на интервале (-1, 1) или на открытом луче
О т в е т: -1 < х < 1; х > 2.


Пример 2. Решить неравенство
Решение. Как и в предыдущем примере, почерпнем необходимую информацию из рис. 11, но с двумя изменениями по сравнению с примером 1. Во-первых, поскольку нас интересует, при каких значениях х выполняется неравенство f (x) < 0, нам придется выбрать промежутки Во-вторых, нас устраивают и те точки, в которых выполняется равенство f (x) = 0. Это точки -1, 1, 2, отметим их на рисунке темными кружочками и включим в ответ. На рис. 12 представлена геометрическая модель ответа, от которой нетрудно перейти к аналитической записи.
Ответ:
П р и м е р 3. Решить неравенство
Решение . Разложим на множители числитель и знаменатель алгебраической дроби fх, содержащейся в левой части неравенства. В числителе имеем х 2 - х = х(х - 1).

Чтобы разложить на множители квадратный трехчлен х 2 - bх ~ 6, содержащийся в знаменателе дроби, найдем его корни. Из уравнения х 2 - 5х - 6 = 0 находим х 1 = -1, х 2 = 6. Значит, (мы воспользовались формулой разложения на множители квадратного трехчлена: ах 2 + bх + с = а(х - х 1 - х 2)).
Тем самым мы преобразовали заданное неравенство к виду


Рассмотрим выражение:


Числитель этой дроби обращается в 0 в точках 0 и 1, а обращается в 0 в точках -1 и 6. Отметим эти точки на числовой прямой (рис. 13). Числовая прямая разбивается указанными точками на пять промежутков, причем на каждом промежутке выражение fх) сохраняет постоянный знак. Рассуждая так же, как в примере 1, приходим к выводу, что знаки выражения fх) в выделенных промежутках таковы, как показано на рис. 13. Нас интересует, где выполняется неравенство f (x) < 0. С помощью геометрической модели, представленной на рис. 13, устанавливаем, что f (х) < 0 на интервале (-1, 0) или на интервале (1, 6).

0твет: -1


Пример 4. Решить неравенство


Решение. При решении рациональных неравенств, как правило, предпочитают оставлять в правой части неравенства только число 0. Поэтому преобразуем неравенство к виду


Далее:


Как показывает опыт, если в правой части не(ра-венства содержится лишь число 0, удобнее проводить рассуждения, когда в левой его части и числитель и знаменатель имеют положительный старший коэффициент . А что у нас? У нас в знаменателе дроби в этом смысле все в порядке (старший коэффициент, т.е. коэффициент при х 2 , равен 6 - положительное число), но в числителе не все в порядке - старший коэффициент (коэффициент при х) равен -4 (отрицательное число). Умножив обе части неравенства на -1 и изменив при этом знак неравенства на противоположный, получим равносильное ему неравенство


Разложим числитель и знаменатель алгебраической дроби на множители. В числителе все просто:
Чтобы разложить на множители содержащийся в знаменателе дроби квадратный трехчлен

(мы снова воспользовались формулой разложения на множители квадратного трехчлена).
Тем самым заданное неравенство мы привели к виду


Рассмотрим выражение


Числитель этой дроби обращается в 0 в точке а знаменатель - в точках Отметим эти точки на числовой прямой (рис. 14), которая разбивается указанными точками на четыре промежутка, причем на каждом промежутке выражение f (х) сохраняет постоянный знак (эти знаки указаны на рис. 14). Нас интересуют те промежутки, на которых выполняется неравенство fх < 0; эти промежутки выделены штриховкой на рис. 15. По условию, нас интересуют и те точки х, в которых выполняется равенство f (х) = 0. Такая точка только одна - это точка поскольку лишь при этом значении числитель дроби f (х) обращается в нуль. Точка отмечена на рис. 15 темным кружочком. Таким образом, на рис. 15 представлена геометрическая модель решения заданного неравенства, от которой нетрудно перейти к аналитической записи.


Во всех рассмотренных примерах мы преобразовывали заданное неравенство в равносильное ему неравенство вида f {х) > 0 или f (x) <0,где
При этом количество множителей в числителе и знаменателе дроби может быть любым. Затем отмечали на числовой прямой точки а,Ь,с,д. и определяли знаки выражения f (х) на выделенных промежутках. Заметили, что на самом правом из выделенных промежутков выполняется неравенство f (х) > 0, а далее по промежуткам знаки выражения f (х) чередуются (см. рис. 16а). Это чередование удобно иллюстрировать с помощью волнообразной кривой, которая чертится справа налево и сверху вниз (рис. 166). На тех промежутках, где эта кривая (ее иногда называют кривой знаков) расположена выше оси х, выполняется неравенство f (х) > 0; где эта кривая расположена ниже оси х, выполняется неравенство f (х) < 0.


Пример 5. Решить неравенство


Решение. Имеем


(обе части предыдущего неравенства умножили на 6).
Чтобы воспользоваться методом интервалов, отметим на числовой прямой точки (в этих точках числитель дроби, содержащейся в левой части неравенства, обращается в нуль) и точки (в этих точках знаменатель указанной дроби обращается в нуль). Обычно точки отмечают схематически, учитывая порядок их следования (какое - правее, какое - левее) и не особенно обращая внимания на соблюдение масштаба. Ясно, что Сложнее обстоит дело с числами Первая прикидка показывает, что и то и другое число чуть больше, чем 2,6, откуда нельзя сделать вывод о том, какое из указанных чисел больше, а какое - меньше. Предположим (наугад), что Тогда
Получилось верное неравенство, значит, наша догадка подтвердилась: на самом деле
Итак,

Отметим указанные 5 точек в указанном порядке на числовой прямой (рис. 17а). Расставим знаки выражения
на полученных промежутках: на самом правом - знак +, а далее знаки чередуются (рис. 176). Начертим кривую знаков и выделим (штриховкой) те промежутки, на которых выполняется интересующее нас неравенство f (x) > 0 (рис. 17в). Учтем, наконец, что речь идет о нестрогом неравенстве f (x) > 0, значит, нас интересуют и те точки, в которых выражение f (x) обращается в нуль. Это - корни числителя дроби f (x), т.е. точки отметим их на рис. 17в темными кружочками (и, естественно, включим в ответ). Вот теперь рис. 17в дает полную геометрическую модель решений заданного неравенства.

Метод интервалов - это универсальный способ решения практически любых неравенств, которые встречаются в школьном курсе алгебры. Он основан на следующих свойствах функций:

1. Непрерывная функция g(x) может изменить знак только в той точке, в которой она равна 0. Графически это означает, что график непрерывной функции может перейти из одной полуплоскости в другую, только если пересечет ось абсцисс (мы помним, что ордината любой точки, лежащей на оси ОХ (оси абсцисс) равна нулю, то есть значение функции в этой точке равно 0):

Мы видим, что функция y=g(x), изображенная на графике пересекает ось ОХ в точках х= -8, х=-2, х=4, х=8. Эти точки называются нулями функции. И в этих же точках функция g(x) меняет знак.

2. Функция также может менять знак в нулях знаменателя - простейший пример хорошо известная функция :

Мы видим, что функция меняет знак в корне знаменателя, в точке , но при этом не обращается в ноль ни в одной точке. Таким образом, если функция содержит дробь, она может менять знак в корнях знаменателя.

2. Однако, функция не всегда меняет знак в корне числителя или в корне знаменателя. Например, функция y=x 2 не меняет знак в точке х=0:

Т.к. уравнение x 2 =0 имеет два равных корня х=0, в точке х=0 функция как бы дважды обращается в 0. Такой корень называется корнем второй кратности.

Функция меняет знак в нуле числителя, , но не меняет знак в нуле знаменателя: , так как корень - корень второй кратности, то есть четной кратности:


Важно! В корнях четной кратности функция знак не меняет.

Обратите внимание! Любое нелинейное неравенство школьного курса алгебры, как правило, решается с помощью метода интервалов.

Предлагаю вам подробный , следуя которому вы сможете избежать ошибок при решении нелинейных неравенств .

1. Для начала необходимо привести неравенство к виду

Р(х)V0,

где V- знак неравенства: <,>,≤ или ≥. Для этого необходимо:

а) перенести все слагаемые в левую часть неравенства,

б) найти корни получившегося выражения,

в) разложить левую часть неравенства на множители

г) одинаковые множители записать в виде степени.

Внимание! Последнее действие необходимо сделать, чтобы не ошибиться с кратностью корней - если в результате получится множитель в четной степени, значит, соответствующий корень имеет четную кратность.

2. Нанести найденные корни на числовую ось.

3. Если неравенство строгое, то кружки, обозначающие корни на числовой оси оставляем "пустыми", если неравенство нестрогое, то кружки закрашиваем.

4. Выделяем корни четной кратности - в них Р(х) знак не меняет.

5. Определяем знак Р(х) на самом правом промежутке. Для этого берем произвольное значение х 0 , которое больше большего корня и подставляем в Р(х) .

Если P(x 0)>0 (или ≥0), то в самом правом промежутке ставим знак "+".

Если P(x 0)<0 (или ≤0), то в самом правом промежутке ставим знак "-".

При переходе через точку, обозначающую корень четной кратности знак НЕ МЕНЯЕТСЯ.

7. Еще раз смотрим на знак исходного неравенства, и выделяем промежутки нужного нам знака.

8. Внимание! Если наше неравенство НЕСТРОГОЕ, то условие равенства нулю проверяем отдельно.

9. Записываем ответ.

Если исходное неравенство содержит неизвестное в знаменателе , то также переносим все слагаемых влево, и приводим левую часть неравенства к виду

(где V- знак неравенства: < или >)

Строгое неравенство такого вида равносильно неравенству

НЕстрогое неравенство вида

равносильно системе :

На практике, если функция имеет вид , то поступаем следующим образом:

  1. Находим корни числителя и знаменателя.
  2. Наносим их на ось. Все кружки оставляем пустыми. Затем, если неравенство не строгое, то корни числителя закрашиваем, а корни знаменателя всегда оставляем пустыми.
  3. Далее следуем общему алгоритму:
  4. Выделяем корни четной кратности (если числитель и знаменатель содержат одинаковые корни, то считаем, сколько раз встречаются одинаковые корни). В корнях четной кратности смены знака не происходит.
  5. Выясняем знак на самом правом промежутке.
  6. Расставляем знаки.
  7. В случае нестрого неравенства условие равенства условие равенства нулю проверяем отдельно.
  8. Выделяем нужные промежутки и отдельно стоящие корни.
  9. Записываем ответ.

Чтобы лучше понять алгоритм решения неравенств методом интервалов , посмотрите ВИДЕОУРОК, в котором подробно разбирается пример решения неравенства методом интервалов .

Продолжаем разбирать способы решения неравенств, имеющих в составе одну переменную. Мы уже изучили линейные и квадратные неравенства, которые представляют из себя частные случаи рациональных неравенств. В этой статье мы уточним, неравенства какого типа относятся к рациональным, расскажем, на какие виды они делятся (целые и дробные). После этого покажем, как правильно их решать, приведем нужные алгоритмы и разберем конкретные задачи.

Yandex.RTB R-A-339285-1

Понятие рациональных равенств

Когда в школе изучают тему решения неравенств, то сразу берут рациональные неравенства. На них приобретаются и оттачиваются навыки работы с этим видом выражений. Сформулируем определение данного понятия:

Определение 1

Рациональное неравенство представляет из себя такое неравенство с переменными, которое содержит в обоих частях рациональные выражения.

Отметим, что определение никак не затрагивает вопрос количества переменных, значит, их может быть сколь угодно много. Следовательно, возможны рациональные неравенства с 1 , 2 , 3 и более переменными. Чаще всего приходится иметь дело с выражениями, содержащими всего одну переменную, реже две, а неравенства с большим количеством переменных обычно в рамках школьного курса не рассматривают вовсе.

Таким образом, мы можем узнать рациональное неравенство, посмотрев на его запись. И с правой, и с левой стороны у него должны быть расположены рациональные выражения. Приведем примеры:

x > 4 x 3 + 2 · y ≤ 5 · (y − 1) · (x 2 + 1) 2 · x x - 1 ≥ 1 + 1 1 + 3 x + 3 · x 2

А вот неравенство вида 5 + x + 1 < x · y · z не относится к рациональным, поскольку слева у него есть переменная под знаком корня.

Все рациональные неравенства делятся на целые и дробные.

Определение 2

Целое рациональное равенство состоит из целых рациональных выражений (в обеих частях).

Определение 3

Дробно рациональное равенство – это такое равенство, которое содержит дробное выражение в одной или обеих своих частях.

Например, неравенства вида 1 + x - 1 1 3 2 2 + 2 3 + 2 11 - 2 · 1 3 · x - 1 > 4 - x 4 и 1 - 2 3 5 - y > 1 x 2 - y 2 являются дробно рациональными, а 0 , 5 · x ≤ 3 · (2 − 5 · y) и 1: x + 3 > 0 – целыми.

Мы разобрали, что из себя представляют рациональные неравенства, и выделили их основные типы. Можем переходить дальше, к обзору способов их решения.

Допустим, что нам требуется найти решения целого рационального неравенства r (x) < s (x) , которое включает в себя только одну переменную x . При этом r (x) и s (x) представляют собой любые целые рациональные числа или выражения, а знак неравенства может отличаться. Чтобы решить это задание, нам нужно преобразовать его и получить равносильное равенство.

Начнем с перенесения выражения из правой части в левую. Получим следующее:

вида r (x) − s (x) < 0 (≤ , > , ≥)

Мы знаем, что r (x) − s (x) будет целым значением, а любое целое выражение допустимо преобразовать в многочлен. Преобразуем r (x) − s (x) в h (x) . Это выражение будет тождественно равным многочленом. Учитывая, что у r (x) − s (x) и h (x) область допустимых значений x одинакова, мы можем перейти к неравенствам h (x) < 0 (≤ , > , ≥) , которое будет равносильно исходному.

Зачастую такого простого преобразования будет достаточно для решения неравенства, поскольку в итоге может получиться линейное или квадратное неравенство, значение которого вычислить несложно. Разберем такие задачи.

Пример 1

Условие: решите целое рациональное неравенство x · (x + 3) + 2 · x ≤ (x + 1) 2 + 1 .

Решение

Начнем с переноса выражения из правой части в левую с противоположным знаком.

x · (x + 3) + 2 · x − (x + 1) 2 − 1 ≤ 0

Теперь, когда мы выполнили все действия с многочленами слева, можно переходить к линейному неравенству 3 · x − 2 ≤ 0 , равносильному тому, что было дано в условии. Решить его несложно:

3 · x ≤ 2 x ≤ 2 3

Ответ: x ≤ 2 3 .

Пример 2

Условие: найдите решение неравенства (x 2 + 1) 2 − 3 · x 2 > (x 2 − x) · (x 2 + x) .

Решение

Переносим выражение из левой части в правую и выполняем дальнейшие преобразования с помощью формул сокращенного умножения.

(x 2 + 1) 2 − 3 · x 2 − (x 2 − x) · (x 2 + x) > 0 x 4 + 2 · x 2 + 1 − 3 · x 2 − x 4 + x 2 > 0 1 > 0

В итоге наших преобразований мы получили неравенство, которое будет верным при любых значениях x , следовательно, решением исходного неравенства может быть любое действительное число.

Ответ: любое действительно число.

Пример 3

Условие: решите неравенство x + 6 + 2 · x 3 − 2 · x · (x 2 + x − 5) > 0 .

Решение

Из правой части мы ничего переносить не будем, поскольку там 0 . Начнем сразу с преобразования левой части в многочлен:

x + 6 + 2 · x 3 − 2 · x 3 − 2 · x 2 + 10 · x > 0 − 2 · x 2 + 11 · x + 6 > 0 .

Мы вывели квадратное неравенство, равносильное исходному, которое легко решить несколькими методами. Применим графический способ.

Начнем с вычисления корней квадратного трехчлена − 2 · x 2 + 11 · x + 6 :

D = 11 2 - 4 · (- 2) · 6 = 169 x 1 = - 11 + 169 2 · - 2 , x 2 = - 11 - 169 2 · - 2 x 1 = - 0 , 5 , x 2 = 6

Теперь на схеме отметим все необходимые нули. Поскольку старший коэффициент меньше нуля, ветви параболы на графике будут смотреть вниз.

Нам будет нужна область параболы, расположенная над осью абсцисс, поскольку в неравенстве у нас стоит знак > . Нужный интервал равен (− 0 , 5 , 6) , следовательно, эта область значений и будет нужным нам решением.

Ответ: (− 0 , 5 , 6) .

Бывают и более сложные случаи, когда слева получается многочлен третьей или более высокой степени. Чтобы решить такое неравенство, рекомендуется использовать метод интервалов. Сначала мы вычисляем все корни многочлена h (x) , что чаще всего делается с помощью разложения многочлена на множители.

Пример 4

Условие: вычислите (x 2 + 2) · (x + 4) < 14 − 9 · x .

Решение

Начнем, как всегда, с переноса выражения в левую часть, после чего нужно будет выполнить раскрытие скобок и приведение подобных слагаемых.

(x 2 + 2) · (x + 4) − 14 + 9 · x < 0 x 3 + 4 · x 2 + 2 · x + 8 − 14 + 9 · x < 0 x 3 + 4 · x 2 + 11 · x − 6 < 0

В итоге преобразований у нас получилось равносильное исходному равенство, слева у которого стоит многочлен третьей степени. Применим метод интервалов для его решения.

Сначала вычисляем корни многочлена, для чего нам надо решить кубическое уравнение x 3 + 4 · x 2 + 11 · x − 6 = 0 . Имеет ли оно рациональные корни? Они могут быть лишь в числе делителей свободного члена, т.е. среди чисел ± 1 , ± 2 , ± 3 , ± 6 . Подставим их по очереди в исходное уравнение и выясним, что числа 1 , 2 и 3 будут его корнями.

Значит, многочлен x 3 + 4 · x 2 + 11 · x − 6 может быть описан в виде произведения (x − 1) · (x − 2) · (x − 3) , и неравенство x 3 + 4 · x 2 + 11 · x − 6 < 0 может быть представлено как (x − 1) · (x − 2) · (x − 3) < 0 . С неравенством такого вида нам потом будет легче определить знаки на промежутках.

Далее выполняем оставшиеся шаги интервального метода: рисуем числовую прямую и точки на ней с координатами 1 , 2 , 3 . Они разбивают прямую на 4 промежутка, в которых нужно определить знаки. Заштрихуем промежутки с минусом, поскольку исходное неравенство имеет знак < .

Нам осталось только записать готовый ответ: (− ∞ , 1) ∪ (2 , 3) .

Ответ: (− ∞ , 1) ∪ (2 , 3) .

В некоторых случаях выполнять переход от неравенства r (x) − s (x) < 0 (≤ , > , ≥) к h (x) < 0 (≤ , > , ≥) , где h (x) – многочлен в степени выше 2 , нецелесообразно. Это распространяется на те случаи, когда представить r (x) − s (x) как произведение линейных двучленов и квадратных трехчленов проще, чем разложить h (x) на отдельные множители. Разберем такую задачу.

Пример 5

Условие: найдите решение неравенства (x 2 − 2 · x − 1) · (x 2 − 19) ≥ 2 · x · (x 2 − 2 · x − 1) .

Решение

Данное неравенство относится к целым. Если мы перенесем выражение из правой части влево, раскроем скобки и выполним приведение слагаемых, то получим x 4 − 4 · x 3 − 16 · x 2 + 40 · x + 19 ≥ 0 .

Решить такое неравенство непросто, поскольку придется искать корни многочлена четвертой степени. Оно не имеет ни одного рационального корня (так, 1 , − 1 , 19 или − 19 не подходят), а искать другие корни сложно. Значит, воспользоваться этим способом мы не можем.

Но есть и другие способы решения. Если мы перенесем выражения из правой части исходного неравенства в левую, то сможем выполнить вынесение за скобки общего множителя x 2 − 2 · x − 1:

(x 2 − 2 · x − 1) · (x 2 − 19) − 2 · x · (x 2 − 2 · x − 1) ≥ 0 (x 2 − 2 · x − 1) · (x 2 − 2 · x − 19) ≥ 0 .

Мы получили неравенство, равносильное исходному, и его решение даст нам искомый ответ. Найдем нули выражения в левой части, для чего решим квадратные уравнения x 2 − 2 · x − 1 = 0 и x 2 − 2 · x − 19 = 0 . Их корни – 1 ± 2 , 1 ± 2 5 . Переходим к равенству x - 1 + 2 · x - 1 - 2 · x - 1 + 2 5 · x - 1 - 2 5 ≥ 0 , которое можно решить методом интервалов:

Согласно рисунку, ответом будет - ∞ , 1 - 2 5 ∪ 1 - 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

Ответ: - ∞ , 1 - 2 5 ∪ 1 - 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

Добавим, что иногда нет возможности найти все корни многочлена h (x) , следовательно, мы не можем представить его в виде произведения линейных двучленов и квадратных трехчленов. Тогда решить неравенство вида h (x) < 0 (≤ , > , ≥) мы не можем, значит, решить исходное рациональное неравенство тоже нельзя.

Допустим, надо решить дробно рационально неравенств вида r (x) < s (x) (≤ , > , ≥) , где r (x) и s (x) являются рациональными выражениями, x – переменной. Хотя бы одно из указанных выражений будет дробным. Алгоритм решения в этом случае будет таким:

  1. Определяем область допустимых значений переменной x .
  2. Переносим выражение из правой части неравенства налево, а получившееся выражение r (x) − s (x) представляем в виде дроби. При этом где p (x) и q (x) будут целыми выражениями, которые являются произведениями линейных двучленов, неразложимых квадратных трехчленов, а также степеней с натуральным показателем.
  3. Далее решаем полученное неравенство методом интервалов.
  4. Последним шагом является исключение точек, полученных в ходе решения, из области допустимых значений переменной x , которую мы определили в начале.

Это и есть алгоритм решения дробно рационального неравенства. Большая часть его понятна, небольшие пояснения требуются только для п. 2 . Мы перенесли выражение из правой части налево и получили r (x) − s (x) < 0 (≤ , > , ≥) , а как потом привести его к виду p (x) q (x) < 0 (≤ , > , ≥) ?

Сначала определим, всегда ли можно выполнить данное преобразование. Теоретически, такая возможность имеется всегда, поскольку в рациональную дробь можно преобразовать любое рациональное выражение. Здесь же у нас есть дробь с многочленами в числителе и знаменателе. Вспомним основную теорему алгебры и теорему Безу и определим, что любой многочлен n -ной степени, содержащий одну переменную, может быть преобразован в произведение линейных двучленов. Следовательно, в теории мы всегда можем преобразовать выражение таким образом.

На практике разложение многочленов на множители зачастую оказывается довольно трудной задачей, особенно если степень выше 4 . Если мы не сможем выполнить разложение, то не сможем и решить данное неравенство, однако в рамках школьного курса такие проблемы обычно не изучаются.

Далее нам надо решить, будет ли полученное неравенство p (x) q (x) < 0 (≤ , > , ≥) равносильным по отношению к r (x) − s (x) < 0 (≤ , > , ≥) и к исходному. Есть вероятность, что оно может оказаться и неравносильным.

Равносильность неравенства будет обеспечена тогда, когда область допустимых значений p (x) q (x) совпадет с областью значений выражения r (x) − s (x) . Тогда последний пункт инструкции по решению дробно рациональных неравенств выполнять не нужно.

Но область значений для p (x) q (x) может оказаться шире, чем у r (x) − s (x) , например, за счет сокращения дробей. Примером может быть переход от x · x - 1 3 x - 1 2 · x + 3 к x · x - 1 x + 3 . Либо это может происходить при приведении подобных слагаемых, например, здесь:

x + 5 x - 2 2 · x - x + 5 x - 2 2 · x + 1 x + 3 к 1 x + 3

Для таких случаев и добавлен последний шаг алгоритма. Выполнив его, вы избавитесь от посторонних значений переменной, которые возникают из-за расширения области допустимых значений. Возьмем несколько примеров, чтобы было более понятно, о чем идет речь.

Пример 6

Условие: найдите решения рационального равенства x x + 1 · x - 3 + 4 x - 3 2 ≥ - 3 · x x - 3 2 · x + 1 .

Решение

Действуем по алгоритму, указанному выше. Сначала определяем область допустимых значений. В данном случае она определяется системой неравенств x + 1 · x - 3 ≠ 0 x - 3 2 ≠ 0 x - 3 2 · (x + 1) ≠ 0 , решением которой будет множество (− ∞ , − 1) ∪ (− 1 , 3) ∪ (3 , + ∞) .

x x + 1 · x - 3 + 4 (x - 3) 2 + 3 · x (x - 3) 2 · (x + 1) ≥ 0

После этого нам нужно преобразовать его так, чтобы было удобно применить метод интервалов. Первым делом приводим алгебраические дроби к наименьшему общему знаменателю (x − 3) 2 · (x + 1) :

x x + 1 · x - 3 + 4 (x - 3) 2 + 3 · x (x - 3) 2 · (x + 1) = = x · x - 3 + 4 · x + 1 + 3 · x x - 3 2 · x + 1 = x 2 + 4 · x + 4 (x - 3) 2 · (x + 1)

Сворачиваем выражение в числителе, применяя формулу квадрата суммы:

x 2 + 4 · x + 4 x - 3 2 · x + 1 = x + 2 2 x - 3 2 · x + 1

Областью допустимых значений получившегося выражения является (− ∞ , − 1) ∪ (− 1 , 3) ∪ (3 , + ∞) . Мы видим, что она аналогична той, что была определена для исходного равенства. Заключаем, что неравенство x + 2 2 x - 3 2 · x + 1 ≥ 0 является равносильным исходному, значит, последний шаг алгоритма нам не нужен.

Используем метод интервалов:

Видим решение { − 2 } ∪ (− 1 , 3) ∪ (3 , + ∞) , которое и будет решением исходного рационального неравенства x x + 1 · x - 3 + 4 x - 3 2 ≥ - 3 · x (x - 3) 2 · (x + 1) .

Ответ: { − 2 } ∪ (− 1 , 3) ∪ (3 , + ∞) .

Пример 7

Условие: вычислите решение x + 3 x - 1 - 3 x x + 2 + 2 x - 1 > 1 x + 1 + 2 · x + 2 x 2 - 1 .

Решение

Определяем область допустимых значений. В случае с этим неравенством она будет равна всем действительным числам, кроме − 2 , − 1 , 0 и 1 .

Переносим выражения из правой части в левую:

x + 3 x - 1 - 3 x x + 2 + 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 > 0

x + 3 x - 1 - 3 x x + 2 = x + 3 - x - 3 x x + 2 = 0 x x + 2 = 0 x + 2 = 0

Учитывая получившийся результат, запишем:

x + 3 x - 1 - 3 x x + 2 + 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 = = 0 + 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 = = 2 x - 1 - 1 x + 1 - 2 · x + 2 x 2 - 1 = = 2 x - 1 - 1 x + 1 - 2 · x + 2 (x + 1) · x - 1 = = - x - 1 (x + 1) · x - 1 = - x + 1 (x + 1) · x - 1 = - 1 x - 1

Для выражения - 1 x - 1 областью допустимых значений будет множество всех действительных чисел, за исключением единицы. Мы видим, что область значений расширилась: в нее были добавлены − 2 , − 1 и 0 . Значит, нам нужно выполнить последний шаг алгоритма.

Поскольку мы пришли к неравенству - 1 x - 1 > 0 , можем записать равносильное ему 1 x - 1 < 0 . С помощью метода интервалов вычислим решение и получим (− ∞ , 1) .

Исключаем точки, которые не входят в область допустимых значений исходного равенства. Нам надо исключить из (− ∞ , 1) числа − 2 , − 1 и 0 . Таким образом, решением рационального неравенства x + 3 x - 1 - 3 x x + 2 + 2 x - 1 > 1 x + 1 + 2 · x + 2 x 2 - 1 будут значения (− ∞ , − 2) ∪ (− 2 , − 1) ∪ (− 1 , 0) ∪ (0 , 1) .

Ответ: (− ∞ , − 2) ∪ (− 2 , − 1) ∪ (− 1 , 0) ∪ (0 , 1) .

В заключение приведем еще один пример задачи, в котором окончательный ответ зависит от области допустимых значений.

Пример 8

Условие: найдите решение неравенства 5 + 3 x 2 x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 ≥ 0 .

Решение

Область допустимых значений неравенства, заданного в условии, определяет система x 2 ≠ 0 x 2 - x + 1 ≠ 0 x - 1 ≠ 0 x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 ≠ 0 .

Решений у этой системы нет, поскольку

x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 = = (x + 1) · x 2 - x + 1 x 2 - x + 1 - (x - 1) · x + 1 x - 1 = = x + 1 - (x + 1) = 0

Значит, исходное равенство 5 + 3 x 2 x 3 + 1 x 2 - x + 1 - x 2 - 1 x - 1 ≥ 0 не имеет решения, поскольку нет таких значений переменной, при которой оно имело бы смысл.

Ответ: решений нет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

При решении линейных неравенств есть только одна большая фишка: необходимо менять знак неравенства при делении (или умножении) неравенства на отрицательное число. Менять знак неравенства значит изменять знак "меньше" на знак "больше" или наоборот. При этом знаки плюс на минус в обход ранее изученных математических правил нигде менять не надо. Если мы делим или умножаем неравенство на положительное число знак неравенства менять не нужно. В остальном решение линейных неравенств полностью идентично решению линейных уравнений.

В линейных и в любых других рациональных неравенствах ни в коем случае нельзя домножать или делить левую или правую части неравенства на выражения, содержащие переменную (кроме случаев, когда данное выражение положительно либо отрицательно на всей числовой оси, в этом случае при делении на всегда отрицательное выражение знак неравенства нужно поменять, а при делении на всегда положительное выражение знак неравенства нужно сохранить).

Решение неравенств вида:

Проводится с помощью метода интервалов , который состоит в следующем:

  1. Изображаем координатную прямую, на которую наносим все числа a i . Эти числа, расположенные в порядке возрастания, разобьют координатную прямую на (n +1) промежутков знакопостоянства функции f (x ).
  2. Таким образом, определив знак f (x ) в любой точке каждого промежутка (обычно эта точка выбирается из удобства арифметических действий), определяем знак функции на каждом промежутке. Главное при этом не подставлять в функцию сами границы промежутков.
  3. Выписываем в ответ все те промежутки, знак функции на которых соответствуют основному условию неравенства.

Нужно также отметить, что не обязательно исследовать знак функции на каждом промежутке подстановкой некоторого значения из этого промежутка. Достаточно определить таким образом знак функции только на одном промежутке (обычно на крайнем правом), а затем двигаясь от этого промежутка влево вдоль числовой оси можно чередовать знаки промежутков по принципу:

  • Если скобка из которой взялось число через которое мы переходим стоит в нечетной меняется .
  • А если соответствующая скобка стоит в четной степени, то при переходе через соответствующую точку знак неравенства не меняется .

При этом нужно учитывать еще и следующие замечания:

  • В строгих неравенствах (знаки "меньше" или "больше") границы промежутков никогда не входят в ответ, а на числовой оси они изображаются выколотыми точками.
  • В нестрогих неравенствах (знаки "меньше либо равно" или "больше либо равно") те границы промежутков, которые взяты из числителя всегда входят в ответ и изображаются закрашенными точками (так как в этих точках функция действительно обращается в ноль, что удовлетворяет условию).
  • А вот границы взятые из знаменателя в нестрогих неравенствах всегда изображаются выколотыми точками и в ответ никогда не входят (так как в этих точках в ноль обращается знаменатель, что недопустимо).
  • Во всех неравенствах если одна и та же скобка есть и в числителе и в знаменателе, то сокращать на эту скобку нельзя. Нужно изобразить соответствующую ей точку выколотой на оси, и не забыть исключить из ответа. При этом при чередовании знаков промежутков, проходя через эту точку знак менять не нужно.

Итак еще раз самое важное: при записи окончательного ответа в неравенствах не потеряйте отдельные точки, удовлетворяющие неравенству (это корни числителя в нестрогих неравенствах), и не забудьте исключить из ответа все корни знаменателя во всех неравенствах.

При решении рациональных неравенств более сложного вида чем указан выше, необходимо сначала алгебраическими преобразованиями свести их именно к такому виду, а затем применить метод интервалов с учетом всех уже описанных тонкостей. Таким образом, можно предложить следующий алгоритм для решения рациональных неравенств :

  1. Все слагаемые, дроби и другие выражения необходимо перенести в левую часть неравенства.
  2. При необходимости привести дроби к общему знаменателю.
  3. Разложить числитель и знаменатель полученной дроби на множители.
  4. Решить полученное неравенство методом интервалов.

При этом при решении рациональных неравенств не допускается :

  1. Перемножать дроби «крест-накрест».
  2. Как и в уравнениях, нельзя сокращать множители с переменной с обеих сторон неравенства. Если такие множители есть, то после переноса всех выражений в левую часть неравенства их нужно вынести за скобки, а затем учесть те точки которые они дадут после окончательного разложения полученного выражения на множители.
  3. Отдельно рассматривать числитель и знаменатель дроби.

Как и в остальных темах по математике, при решении рациональных неравенств можно применять метод замены переменной . Главное не забывать, что после введения замены, новое выражение должно стать проще и не содержать старой переменной. Кроме того, нужно не забывать выполнять обратную замену.

При решении систем рациональных неравенств нужно по очереди решить все неравенства входящие в систему. Система требует выполнения двух и более условий, причем мы ищем те значения неизвестной величины, которые удовлетворяют сразу всем условиям. Поэтому, в ответе системы неравенств нужно указать общие части всех решений отдельных неравенств (или общие части всех заштрихованных промежутков, изображающих ответы каждого отдельного неравенства).

При решении совокупностей рациональных неравенств также по очереди решают каждое из неравенств. Совокупность требует нахождения всех значений переменной, удовлетворяющих хотя бы одному из условий. То есть любому из условий, нескольким условиям или всем условиям вместе. В ответе совокупности неравенств указывают все части всех решений отдельных неравенств (или все части всех заштрихованных промежутков, изображающих ответы каждого отдельного неравенства).

Решение некоторых типов неравенств с модулями

Неравенства с модулями можно и нужно решать последовательно раскрывая модули на промежутках их знакопостоянства. Таким образом, нужно поступать примерно также как при решении уравнений с модулями (об этом ниже). Но есть несколько относительно простых случаев в которых решение неравенства с модулем сводится к более простому алгоритму. Так например, решение неравенства вида:

Сводится к решению системы :

В частности неравенство:

системой :

Ну а если в аналогичном неравенстве заменить знак "меньше" на "больше":

То его решение сводится уже к решению совокупности :

В частности неравенство:

Может быть заменено равносильной совокупностью :

Таким образом, необходимо запомнить, что для неравенства "модуль меньше" мы получаем систему, где должны одновременно выполняться оба условия, а для неравенства "модуль больше" мы получаем совокупность, в которой должно выполняться любое из условий.

При решении рациональных неравенств с модулем вида:

Целесообразно переходить к следующему равносильному рациональному неравенству без модуля:

Такое неравенство нельзя решать извлечением корня (если по-честному извлекать корень, то снова нужно поставить модули, и Вы вернетесь к началу, если про модули забыть, это равносильно тому, чтобы в самом начале про них просто забыть, а это, конечно, ошибка). Все скобки нужно перенести налево и, ни в коем случае не раскрывая скобки, применить формулу разности квадратов.

Еще раз повторимся, что для решения всех других типов неравенств с модулями кроме указанных выше нужно раскрывать все модули входящие в неравенство на промежутках их знакопостоянства и решать полученные неравенства. Напомним подробнее общий смысл этого алгоритма:

  • Сначала находим точки на числовой оси, в которых обращается в ноль каждое из выражений, стоящих под модулем.
  • Далее делим всю числовую ось на интервалы между полученными точками и исследуем знак каждого из подмодульных выражений на каждом интервале. Заметьте, что для определения знака выражения надо подставить в него любое значение переменной из интервала, кроме граничных точек. Выбирайте те значения переменной, которые легко подставлять.
  • Далее на каждом полученном интервале раскрываем все модули в исходном неравенстве в соответствии с их знаками на данном интервале и решаем полученное обычное рациональное неравенство с учетом всех правил и тонкостей решения обычных неравенств без модулей.
  • Решение каждого из неравенств полученных на конкретном промежутке объединяем в систему с самим промежутком, а все такие системы объединяем в совокупность. Таким образом из решений всех неравенств выбираем только те части которые вошли в промежуток, на котором было получено данное неравенство, и записываем все эти части в итоговый ответ.