Уравнение квадратичной функции. Квадратичная функция

Назовите координаты точек, симметричных данным точкам
относительно оси y:
y
(- 2; 6)
(2; 6)
(- 1; 4)
(1; 4)
(0; 0)
(0; 0)
(- 3; - 5)
(3; - 5)
х

На графике видно, что ось OY делит параболу на симметричные
левую и правую части (ветви параболы), в точке с координатами (0; 0)
(вершине параболы) значение функции x 2 - наименьшее.
Наибольшего значения функция не имеет. Вершина параболы - это
точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает,
а при x ∈ [ 0; + ∞) возрастает.

График функции y = x 2 + 3 - такая же парабола, но её
вершина находится в точке с координатами (0; 3) .

Найдите значение функции
y = 5x + 4, если:
х=-1
y = - 1 y = 19
х=-2
y=-6
y = 29
х=3
х=5

Укажите
область определения функции:
y = 16 – 5x
10
y
х
х – любое
число
х≠0
1
y
х 7
4х 1
y
5
х≠7

Постройте графики функций:
1).У=2Х+3
2).У=-2Х-1;
3).

10.

Математическое
исследование
Тема: Функция y = x2

11.

Постройте
график
функции
y = x2

12.

Алгоритм построения параболы..
1.Заполнить таблицу значений Х и У.
2.Отметить в координатной плоскости точки,
координаты которых указаны в таблице.
3.Соедините эти точки плавной линией.

13.

Невероятно,
но факт!
Перевал Парабола

14.

Знаете ли вы?
Траектория камня, брошенного под
углом к горизонту, будет лететь по
параболе.

15. Свойства функции y = x2

*
Свойства функции
y=
2
x

16.

*Область определения
функции D(f):
х – любое число.
*Область значений
функции E(f):
все значения у ≥ 0.

17.

*Если
х = 0, то у = 0.
График функции
проходит через
начало координат.

18.

II
I
*Если
х ≠ 0,
то у > 0.
Все точки графика
функции, кроме точки
(0; 0), расположены
выше оси х.

19.

*Противоположным
значениям х
соответствует одно
и то же значение у.
График функции
симметричен
относительно оси
ординат.

20.

Геометрические
свойства параболы
*Обладает симметрией
*Ось разрезает параболу на
две части: ветви
параболы
*Точка (0; 0) – вершина
параболы
*Парабола касается оси
абсцисс
Ось
симметрии

21.

Найдите у, если:
«Знание – орудие,
а не цель»
Л. Н. Толстой
х = 1,4
- 1,4
у = 1,96
х = 2,6
-2,6
у = 6,76
х = 3,1
- 3,1
у = 9,61
Найдите х, если:
у=6
у=4
х ≈ 2,5 х ≈ -2,5
х=2 х=-2

22.

постройте в одной
системе координат
графики двух функций
1. Случай:
у=х2
У=х+1
2. случай:
У=х2
у= -1

23.

Найдите
несколько значений
х, при которых
значения функции:
меньше 4
больше 4

24.

Принадлежит ли графику функции у = х2 точка:
P(-18; 324)
R(-99; -9081)
принадлежит
не принадлежит
S(17; 279)
не принадлежит
Не выполняя вычислений, определите, какие из
точек не принадлежат графику функции у = х2:
(-1; 1)
*
(-2; 4)
(0; 8)
(3; -9)
(1,8; 3,24)
При каких значениях а точка Р(а; 64) принадлежит графику функции у = х2.
а = 8; а = - 8
(16; 0)

25.

Алгоритм решения уравнения
графическим способом
1. Построить в одной системе
координат графики функций, стоящих
в левой и правой части уравнения.
2. Найти абсциссы точек пересечения
графиков. Это и будут корни
уравнения.
3. Если точек пересечения нет, значит,
уравнение не имеет корней

Ранее мы изучали другие функции, например линейную, напомним ее стандартный вид:

отсюда очевидное принципиальное отличие - в линейной функции х стоит в первой степени, а в той новой функции, к изучению которой мы приступаем, х стоит во второй степени.

Напомним, что графиком линейной функции является прямая линия, а графиком функции , как мы увидим, является кривая, называемая параболой.

Начнем с того, что выясним, откуда появилась формула . Объяснение таково: если нам задан квадрат со стороной а , то площадь его мы можем вычислить так:

Если мы будем менять длину стороны квадрата, то и его площадь будет изменяться.

Итак, приведена одна из причин, по которой изучается функция

Напомним, что переменная х - это независимая переменная, или аргумент, в физической интерпретации это может быть, например, время. Расстояние это наоборот зависимая переменная, оно зависит от времени. Зависимой переменной или функцией называется переменная у .

Это закон соответствия, согласно которому каждому значению х ставится в соответствие единственное значение у .

Любой закон соответствия должен удовлетворять требованию единственности от аргумента к функции. В физической интерпретации это выглядит достаточно понятно на примере зависимости расстояния от времени: в каждый момент времени мы находимся на каком-то конкретном расстоянии от начального пункта, и невозможно одновременно в момент времени t находится и в 10 и в 20 километрах от начала пути.

В то же время каждое значение функции может достигаться при нескольких значениях аргумента.

Итак, нам нужно построить график функции , для этого составить таблицу. Потом по графику исследовать функцию и ее свойства. Но уже до построения графика по виду функции мы можем кое-что сказать о ее свойствах: очевидно, что у не может принимать отрицательных значений, так как

Итак, составим таблицу:

Рис. 1

По графику несложно отметить следующие свойства:

Ось у - это ось симметрии графика;

Вершина параболы - точка (0; 0);

Мы видим, что функция принимает только неотрицательные значения;

На промежутке, где функция убывает, а на промежутке, где функция возрастает;

Наименьшее значение функция приобретает в вершине, ;

Наибольшего значения функции не существует;

Пример 1

Условие:

Решение:

Поскольку х по условию изменяется на конкретном промежутке, можем сказать о функции, что она возрастает и изменяется на промежутке . Функция имеет на этом промежутке минимальное значение и максимальное значение

Рис. 2. График функции y = x 2 , x ∈

Пример 2

Условие: Найти наибольшее и наименьшее значение функции:

Решение:

х изменяется на промежутке , значит у убывает на промежутке пока и возрастает на промежутке пока .

Итак, пределы изменения х , а пределы изменения у , а, значит, на данном промежутке существует и минимальное значение функции , и максимальное

Рис. 3. График функции y = x 2 , x ∈ [-3; 2]

Проиллюстрируем тот факт, что одно и то же значение функции может достигаться при нескольких значениях аргумента.

Вида у = kx + m с двумя переменными х, у. Правда, переменные х, у, фигурирующие в этом уравнении (в этой математической модели) считались неравноправными: х - независимая переменная (аргумент), которой мы могли придавать любые значения, независимо ни от чего; у - зависимая переменная, поскольку ее значение зависело от того, какое значение переменной х было выбрано. Но тогда возникает естественный вопрос: а не встречаются ли математические модели такого же плана, но такие, у которых у выражается через х не по формуле у = kx + m, а каким-то иным способом? Ответ ясен: конечно, встречаются. Если, например, х - сторона квадрата, а у - его
площадь, то у - х 2 . Если х - сторона куба, а у - его объем, то у - х 3 . Если х - одна сторона прямоугольника, площадь которого равна 100 см 2 , а у - другая его сторона, то . Поэтому, естественно, что в математике не ограничиваются изучением модели y-kx + m, приходится изучать и модель у = х 2 , и модель у = х 3 , и модель , и многие другие модели, имеющие такую же структуру: в левой части равенства находится переменная у, а в правой - какое-то выражение с переменной х. Для таких моделей сохраняют термин «функция», опуская прилагательное «линейная».

В этом параграфе мы рассмотрим функцию у = х 2 и построим ее график .

Дадим независимой переменной х несколько конкретных значений и вычислим соответствующие значения зависимой переменной у (по формуле у = x 2):

если х = 0, то у = О 2 = 0;
если х = 1, то у = I 2 = 1;
если х = 2, то у = 2 2 = 4;
если х = 3, то у = З 2 = 9;
если х = - 1, то у = (- I 2) - 1;
если х = - 2, то у = (- 2) 2 = 4;
если х = - 3, то у = (- З) 2 = 9;
Короче говоря, мы составили следующую таблицу:

X 0
1
2
3
-1
-2
-3
У 0
1
4
9
1
4
9

Построим найденные точки (0; 0), (1; 1), (2; 4), 93; 9), (-1; 1), (- 2; 4), (- 3; 9), на координатной плоскости хОу (рис. 54, а).

Эти точки расположены на некоторой линии, начертим ее (рис. 54, б). Эту линию называют параболой.

Конечно, в идеале надо было бы дать аргументу х все возможные значения, вычислить соответствующие значения переменной у и построить полученные точки (х; у). Тогда график был бы абсолютно точным, безупречным. Однако это нереально, ведь таких точек бесконечно много. Поэтому математики поступают так: берут конечное множество точек, строят их на координатной плоскости и смотрят, какая линия намечается этими точками. Если контуры этой линии проявляются достаточно отчетливо (как это было у нас, скажем, в примере 1 из § 28), то эту линию проводят. Возможны ли ошибки? Не без этого. Поэтому и надо все глубже и глубже изучать математику, чтобы были средства избегать ошибок.

Попробуем, глядя на рисунок 54, описать геометрические свойства параболы.

Во-первых , отмечаем, что парабола выглядит довольно красиво, поскольку обладает симметрией. В самом деле, если провести выше оси х любую прямую, параллельную оси х, то эта прямая пересечет параболу в двух точках, расположенных на равных расстояниях от оси у, но по разные стороны от нее (рис. 55). Кстати, то же можно сказать и о точках, отмеченных на рисунке 54, а:

(1; 1} и (- 1; 1); (2; 4) и (-2; 4); C; 9) и (-3; 9).

Говорят, что ось у является осью симметрии параболы у=х 2 или что парабола симметрична относительно оси у.

Во-вторых , замечаем, что ось симметрии как бы разрезает параболу на две части, которые обычно называют ветвями параболы.

В-третьих , отмечаем, что у параболы есть особая точка, в которой смыкаются обе ветви и которая лежит на оси симметрии параболы - точка (0; 0). Учитывая ее особенность, ей присвоили специальное название - вершина параболы.

В-четвертых , когда одна ветвь параболы соединяется в вершине с другой ветвью, это происходит плавно, без излома; парабола как бы «прижимается» к оси абсцисс. Обычно говорят: парабола касается оси абсцисс.

Теперь попробуем, глядя на рисунок 54, описать некоторые свойства функции у = х 2.

Во-первых , замечаем, что у - 0 при х = 0, у > 0 при х > 0 и при х < 0.

Во-вторых, отмечаем, что y наим. = 0, а у наиб не существует.

В-третьих , замечаем, что функция у = х 2 убывает на луче (-°°, 0] - при этих значениях х, двигаясь по параболе слева направо, мы «спускаемся с горки» (см. рис. 55). Функция у = х 2 возрастает на луче ;
б) на отрезке [- 3, - 1,5];
в) на отрезке [- 3, 2].

Решение,

а) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка (рис. 56). Для выделенной части графика находим у наим. = 1 (при х = 1), у наиб. = 9 (при х = 3).

б) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, -1,5] (рис. 57). Для выделенной части графика находим y наим. = 2,25 (при х = - 1,5), у наиб. = 9 (при х = - 3).

в) Построим параболу у = х 2 и выделим ту ее часть, которая соответствует значениям переменной х из отрезка [-3, 2] (рис. 58). Для выделенной части графика находим у наим = 0 (при х = 0), у наиб. = 9 (при х = - 3).

Совет. Чтобы каждый раз не строить график функции у - х 2 по точкам, вырежьте из плотной бумаги шаблон параболы. С его помощью вы будете очень быстро чертить параболу.

Замечание. Предлагая вам заготовить шаблон параболы, мы как бы уравниваем в правах функцию у = х 2 и линейную функцию у = кх + m. Ведь графиком линейной функции является прямая, а для изображения прямой используется обычная линейка - это и есть шаблон графика функции у = кх + m. Так пусть у вас будет и шаблон графика функции у = х 2 .

Пример 2. Найти точки пересечения параболы у = х 2 и прямой у - х + 2.

Решение. Построим в одной системе координат параболу у = х 2 прямую у = х + 2 (рис. 59). Они пересекаются в точках А и В, причем по чертежу нетрудно найти координаты этих точек А и В: для точки А имеем: x = - 1, y = 1, а для точки В имеем: х - 2, у = 4.

Ответ: парабола у = х 2 и прямая у = х + 2 пересекаются в двух точках: А (-1; 1) и В(2;4).

Важное замечание. До сих пор мы с вами довольно смело делали выводы с помощью чертежа. Однако математики не слишком доверяют чертежам. Обнаружив на рисунке 59 две точки пересечения параболы и прямой и определив с помощью рисунка координаты этих точек, математик обычно проверяет себя: на самом ли деле точка (-1; 1) лежит как на прямой, так и на параболе; действительно ли точка (2; 4) лежит и на прямой, и на параболе?

Для этого нужно подставить координаты точек А и В в уравнение прямой и в уравнение параболы, а затем убедиться, что и в том, и в другом случае получится верное равенство. В примере 2 в обоих случаях получатся верные равенства. Особенно часто производят такую проверку, когда сомневаются в точности чертежа.

В заключение отметим одно любопытное свойство параболы, открытое и доказанное совместно физиками и математиками.

Если рассматривать параболу у = х 2 как экран, как отражающую поверхность, а в точке поместить источник света, то лучи, отражаясь от параболы экрана, образуют параллельный пучок света (рис. 60). Точку называют фокусом параболы. Эта идея используется в автомобилях: отражающая поверхность фары имеет параболическую форму, а лампочку помещают в фокусе - тогда свет от фары распространяется достаточно далеко.

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Как построить параболу? Существует несколько способов построения графика квадратичной функции. Каждый из них имеет свои плюсы и минусы. Рассмотрим два способа.

Начнём с построения графика квадратичной функции вида y=x²+bx+c и y= -x²+bx+c.

Пример.

Построить график функции y=x²+2x-3.

Решение:

y=x²+2x-3 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

От вершины (-1;-4) строим график параболы y=x²(как от начала координат. Вместо (0;0) — вершина (-1;-4). От (-1;-4) идём вправо на 1 единицу и вверх на 1 единицу, затем влево на 1 и вверх на 1; далее: 2 — вправо, 4 — вверх, 2- влево, 4 — вверх; 3 — вправо, 9 — вверх, 3 — влево, 9 — вверх. Если этих 7 точек недостаточно, далее — 4 вправо, 16 — вверх и т. д.).

График квадратичной функции y= -x²+bx+c — парабола, ветви которой направлены вниз. Для построения графика ищем координаты вершины и от неё строим параболу y= -x².

Пример.

Построить график функции y= -x²+2x+8.

Решение:

y= -x²+2x+8 — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

От вершины строим параболу y= -x² (1 — вправо, 1- вниз; 1 — влево, 1 — вниз; 2 — вправо, 4 — вниз; 2 — влево, 4 — вниз и т. д.):

Этот способ позволяет построить параболу быстро и не вызывает затруднений, если вы умеете строить графики функций y=x² и y= -x². Недостаток: если координаты вершины — дробные числа, строить график не очень удобно. Если требуется знать точные значения точек пересечения графика с осью Ох, придется дополнительно решить уравнение x²+bx+c=0 (или —x²+bx+c=0), даже если эти точки непосредственно можно определить по рисунку.

Другой способ построения параболы — по точкам, то есть можно найти несколько точек графика и через них провести параболу (с учетом того, что прямая x=хₒ является её осью симметрии). Обычно для этого берут вершину параболы, точки пересечения графика с осями координат и 1-2 дополнительные точки.

Построить график функции y=x²+5x+4.

Решение:

y=x²+5x+4 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

то есть вершина параболы — точка (-2,5; -2,25).

Ищем . В точке пересечения с осью Ох y=0: x²+5x+4=0. Корни квадратного уравнения х1=-1, х2=-4, то есть получили две точки графике (-1; 0) и (-4; 0).

В точке пересечения графика с осью Оy х=0: y=0²+5∙0+4=4. Получили точку (0; 4).

Для уточнения графика можно найти дополнительную точку. Возьмем х=1, тогда y=1²+5∙1+4=10, то есть еще одна точка графика — (1; 10). Отмечаем эти точки на координатной плоскости. С учетом симметрии параболы относительно прямой, проходящей через её вершину, отметим еще две точки: (-5; 6) и (-6; 10) и проведем через них параболу:

Построить график функции y= -x²-3x.

Решение:

y= -x²-3x — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

Вершина (-1,5; 2,25) — первая точка параболы.

В точках пересечения графика с осью абсцисс y=0, то есть решаем уравнение -x²-3x=0. Его корни — х=0 и х=-3, то есть (0;0) и (-3; 0) — еще две точки графика. Точка (о; 0) является также точкой пересечения параболы с осью ординат.

При х=1 y=-1²-3∙1=-4, то есть (1; -4) — дополнительная точка для построения графика.

Построение параболы по точкам — более трудоёмкий, по сравнению с первым, способ. Если парабола не пересекает ось Oх, дополнительных точек потребуется больше.

Прежде чем продолжить построение графиков квадратичных функций вида y=ax²+bx+c, рассмотрим построение графиков функций с помощью геометрических преобразований. Графики функций вида y=x²+c также удобнее всего строить, используя одно из таких преобразований — параллельный перенос.

Рубрика: |

Ранее мы изучали другие функции, например линейную, напомним ее стандартный вид:

отсюда очевидное принципиальное отличие - в линейной функции х стоит в первой степени, а в той новой функции, к изучению которой мы приступаем, х стоит во второй степени.

Напомним, что графиком линейной функции является прямая линия, а графиком функции , как мы увидим, является кривая, называемая параболой.

Начнем с того, что выясним, откуда появилась формула . Объяснение таково: если нам задан квадрат со стороной а , то площадь его мы можем вычислить так:

Если мы будем менять длину стороны квадрата, то и его площадь будет изменяться.

Итак, приведена одна из причин, по которой изучается функция

Напомним, что переменная х - это независимая переменная, или аргумент, в физической интерпретации это может быть, например, время. Расстояние это наоборот зависимая переменная, оно зависит от времени. Зависимой переменной или функцией называется переменная у .

Это закон соответствия, согласно которому каждому значению х ставится в соответствие единственное значение у .

Любой закон соответствия должен удовлетворять требованию единственности от аргумента к функции. В физической интерпретации это выглядит достаточно понятно на примере зависимости расстояния от времени: в каждый момент времени мы находимся на каком-то конкретном расстоянии от начального пункта, и невозможно одновременно в момент времени t находится и в 10 и в 20 километрах от начала пути.

В то же время каждое значение функции может достигаться при нескольких значениях аргумента.

Итак, нам нужно построить график функции , для этого составить таблицу. Потом по графику исследовать функцию и ее свойства. Но уже до построения графика по виду функции мы можем кое-что сказать о ее свойствах: очевидно, что у не может принимать отрицательных значений, так как

Итак, составим таблицу:

Рис. 1

По графику несложно отметить следующие свойства:

Ось у - это ось симметрии графика;

Вершина параболы - точка (0; 0);

Мы видим, что функция принимает только неотрицательные значения;

На промежутке, где функция убывает, а на промежутке, где функция возрастает;

Наименьшее значение функция приобретает в вершине, ;

Наибольшего значения функции не существует;

Пример 1

Условие:

Решение:

Поскольку х по условию изменяется на конкретном промежутке, можем сказать о функции, что она возрастает и изменяется на промежутке . Функция имеет на этом промежутке минимальное значение и максимальное значение

Рис. 2. График функции y = x 2 , x ∈

Пример 2

Условие: Найти наибольшее и наименьшее значение функции:

Решение:

х изменяется на промежутке , значит у убывает на промежутке пока и возрастает на промежутке пока .

Итак, пределы изменения х , а пределы изменения у , а, значит, на данном промежутке существует и минимальное значение функции , и максимальное

Рис. 3. График функции y = x 2 , x ∈ [-3; 2]

Проиллюстрируем тот факт, что одно и то же значение функции может достигаться при нескольких значениях аргумента.