Бурый медведь причины вымирания. Пещерный медведь - далёкий предок наших медведей. Некоторые динозавры могли пережить массовое вымирание на сотни тысяч лет

АЛАМБИК-АЛЬФА

Реферат

Показана обоснованность основных положений, положенных в основу разработки принципиально нового способа получения водорода из воды с использованием кинетической и тепловой энергии. Разработана и испытана конструкция электроводородного генератора (ЭВГ). Во время испытаний при использовании сернокислотного электролита на оборотах ротора 1500 об/мин начался электролиз воды и выход водорода (6…8 % объема.) в условиях подсоса воздуха их окружающей среды.

Проведен анализ процесса разложения воды на кислород и водород в процессе воздействия центробежной силы в генераторе. Установлено, что электролиз воды в центробежном генераторе происходит в условиях, существенно отличающихся от существующих в обычных электролизерах:

Увеличении скорости движения и давления по радиусу вращающегося электролита

Возможность автономного применения ЭВГ не создает проблем хранения и транспорта водорода.

Введение

Попытки за предыдущие 30 лет применить термохимические циклы для разложения воды с использованием более дешевой тепловой энергии по техническим причинам не дали положительного результата.

Технология получения достаточно дешевого водорода из воды с использованием энергии возобновляемых источников и получение при последующей переработке в качестве экологически чистых отходов снова воды (при сжигании в двигателях или при получении электроэнергии в топливных элементах) казались несбыточной мечтой, но с внедрением в практику центробежного электроводородного генератора (ЭВГ) станут реальностью.

ЭВГ предназначен для производства кислород - водородной смеси из воды с использованием кинетической и тепловой энергии. Во вращающийся барабан заливается подогретый электролит, в котором при вращении в результате начинающегося электрохимического процесса происходит разложение воды на водород и кислород.

Модель процесса разложения воды в центробежном поле

Во вращающийся барабан заливается подогретый электролит, в котором при вращении в результате начинающегося электрохимического процесса происходит разложение воды на водород и кислород. ЭВГ разлагает воду с помощью кинетической энергии внешнего источника и тепловой энергии подогретого электролита.

На рис. 1 показана схема движения ионов, молекул воды, электронов, молекул газов водорода и кислорода в ходе электрохимического процесса электролиза воды в кислотном электролите (предполагается, что на распределение молекул в объеме электролита влияет молекулярный вес ионов μ). При добавлении в воду серной кислоты и перемешивании происходит обратимое и равномерное распределение в объеме ионов:

H 2 SO 4 =2H + +SO 4 2- , H + +H 2 O=H 3 O + . (1)

Раствор остается электронейтральным. Ионы и молекулы воды участвуют в броуновском и прочих движениях. С началом вращения ротора под действием центробежной силы происходит расслоение ионов и молекул воды соответственно их массе. Более тяжелые ионы SO 4 2- (μ=96 г/моль) и молекулы воды Н 2 О (μ=18 г/моль) направляются к ободу ротора. В процессе накопления ионов около обода и образования отрицательного вращающегося заряда формируется магнитное поле. Более легкие положительные ионы Н 3 О + (μ=19 г/моль) и молекулы воды (μ=18 г/моль) архимедовыми силами вытесняются в направлении к валу и образуют вращающийся положительный заряд, вокруг которого формируется свое магнитное поле. Известно , что магнитное поле оказывает силовое воздействие на находящиеся рядом отрицательные и положительные ионы, не вовлеченные еще в области зарядов вблизи ротора и вала. Анализ силового воздействия магнитного поля, сформированного вокруг этих ионов, показывает, что отрицательно заряженные ионы SO 4 2- магнитной силой прижимаются к ободу, усиливая действие на них центробежной силы, что приводит к активизации их накопления у обода .

Сила воздействия магнитного поля на положительно заряженные ионы H 3 O + усиливает действие архимедовой силы, что приводит к активизации их смещения к валу.

Электростатические силы отталкивания одноименных и притяжения разноименных зарядов препятствуют накоплению ионов у обода и вала.

Вблизи вала реакция восстановления водорода начинается при нулевом потенциале платинового катода φ + =0 :

Однако восстановление кислорода затягивается до тех пор, пока потенциал анода не достигнет φ - =-1.228 В . После этого электроны иона кислорода получают возможность переходить в платиновый анод (начинается образование молекул кислорода):

2О - - 2е=О 2 . (4)

Начинается электролиз, через токовод начинают течь электроны, а через электролит - ионы SO 4 2- .

Образующиеся газы кислород и водород архимедовой силой выдавливаются в область малого давления вблизи вала и затем по каналам, сделанным в вале, выводятся наружу.

Поддержание в замкнутой цепи электрического тока и высокоэффективный ход термохимических реакций (1-4) возможны при обеспечении ряда условий.

Эндотермическая реакция разложения воды требует постоянного подвода тепла в зону реакции.

Из термодинамики электрохимических процессов известно [ 2,3] , что для развала молекулы воды необходимо подвести энергию:

.

Физики признают, что структура воды даже в нормальных условиях, несмотря на длительное изучение, пока не расшифрована .

Существующая теоретическая химия имеет серьёзные противоречия с экспериментом, но химики уклоняются от поиска причин этих противоречий, проходят мимо возникающих вопросов. Ответы на них можно получить из результатов анализа структуры молекулы воды. Вот как эта структура представляется на современном этапе её познания (см. рис. 2).

Считается, что ядра трех атомов молекулы воды образуют равнобедренный треугольник с двумя протонами, принадлежащими атомам водорода, в основании (рис. 3А), угол между осями Н-О составляет α=104.5 о.

Этой информации о структуре молекулы воды недостаточно, чтобы получить ответы на возникшие вопросы и снять выявленные противоречия. Они следуют из анализа энергий химических связей в молекуле воды, поэтому эти энергии должны быть представлены в ее структуре.

Вполне естественно, что в рамках существующих физических и химических представлений о структуре молекулы воды и о процессе её электролиза с целью получения молекулярного водорода, трудно найти ответы на поставленные вопросы, поэтому автор предлагает свои модели структуры молекулы.

Приведенные в результаты расчетов и экспериментов показывают возможность получения дополнительной энергии при электролизе воды, но для этого надо создавать условия для реализации этой возможности.

Необходимо отметить, что электролиз воды в ЭВГ происходит в условиях, существенно отличающихся (и мало изученных) от условий работы промышленных электролизеров. Давление вблизи обода приближается к 2 МПа, окружная скорость обода около 150 м/ с, градиент скорости у вращающейся стенки достаточно велик и вдобавок к этому действуют электростатические и достаточно сильные магнитные поля. В каком направлении при этих условиях изменятся ΔH o, ΔG и Q, пока неизвестно.

Теоретическое описание процесса электромагнитной гидродинамики в электролите ЭВГ также представляет сложную проблему.

На этапе разгона электролита должно быть учтено вязкое взаимодействие ионов и нейтральных молекул воды в условиях воздействия центробежной и вытесняющей более легкие компоненты архимедовой силы, взаимного электростатического отталкивания одноименных ионов при их сближении в процессе образования заряженных областей, магнитного силового воздействия этих областей на движение заряженных ионов к зарядам.

При установившемся движении, когда начался электролиз, во вращающейся среде идет активное радиальное движение ионов (ионный ток) и всплывающих пузырьков образующегося газа, их накопление вблизи вала ротора и отвод наружу, разделение в магнитном поле парамагнитного кислорода и диамагнитного водорода, подвод (отвод) требуемых порций электролита и подключение поступающих ионов к процессу разделения зарядов.

В простейшем случае несжимаемой адиабатически изолированной жидкости при наличии положительных и отрицательно заряженных ионов и нейтральных молекул этот процесс может быть описан (для одной из компонент) в следующем виде [ 9] :

1. Уравнения движения при условии на внешней границе (r=R, V-V pom):

¶ U/¶ t =(W× Ñ )U=-grad Ф+D (a × U+b × W),

¶ W/¶ t +(U× Ñ )W=-gradФ+D (a × W+b × U),

где V- скорость движения среды, H- напряженность магнитного поля, U=V+H/(4× p × r ) 0.5 , W=V-H/(4× p × r ) 0.5 , Ф=P/r +(U-W) 2 /8, Р- давление, r - плотность среды, n , n m - кинематическая и “магнитная” вязкость, a =(n +n m)/2, b =(n -n m)/2.

2. Уравнения неразрывности жидкости и замкнутости магнитных силовых линий:

3. Уравнение потенциальности электростатического поля:

4. Уравнения кинетики химических реакций, описывающие процесс превращения веществ (типа (1,3)) может быть описан :

dC a /dτ=v·(C o.a -C a)/V е -r a ,

где C a - концентрация продукта химической реакции А (моль/м 3),

v-скорость его движения, V е - объем электролита,

r a -скорость превращения реагентов в продукт химической реакции,

С о.а - концентрация реагентов, подаваемых в зону реакции.

На границе металл- электролит необходим учет кинетики электродных процессов. Некоторые сопутствующие электролизу процессы описаны в электрохимии (электрическая проводимость электролитов, акт химического взаимодействия при соударении химически активных компонент и т.д.) , но единых дифференциальных уравнений рассматриваемых процессов пока не существует.

5. Процесс образования газовой фазы в результате электролиза может быть описан с помощью термодинамических уравнений состояния:

y k =f(x 1 ,x 2 ,….x n ,T),

где y k - внутренние параметры состояния (давление, температура Т, удельный (мольный) объем), x i - внешние параметры внешних сил, с которыми взаимодействует среда (форма объема электролита, поле центробежных и магнитных сил, условия на границе), но процесс перемещения пузырьков во вращающейся жидкости пока изучен слабо.

Следует отметить, что решения системы приведенных выше дифференциальных уравнений пока получены лишь в немногих простейших случаях.

Эффективность работы ЭВГ может быть получена из баланса энергии путем анализа всех потерь.

При установившемся вращении ротора с достаточным числом оборотов мощность двигателя N d тратится на:
преодоление аэродинамического сопротивления ротора N a ;
потери на трение в подшипниках вала N p ;
гидродинамические потери N gd при разгоне поступающего в ротор электролита, трении его о внутреннюю поверхность деталей ротора, преодолению встречного движения к валу образующихся при электролизе пузырьков газа (см. рис. 1) и т.д.;
поляризационные и омические потери N om при движении тока в замкнутом контуре в процессе электролиза (см. рис. 1);
подзарядку конденсатора N k , образованного положительным и отрицательным зарядами;
электролиз N w .

Оценив величину ожидаемых потерь, можно из баланса энергии определить долю энергии N we , расходуемую на разложение воды на кислород и водород:

N w =N d –N a -N p -N gd -N om -N k .

Помимо электроэнергии в объем электролита необходимо добавить тепло мощностью N q =N we× Q/D H o (см. выражение (6)).

Тогда полная мощность, расходуемая на электролиз, составит:

N w =N we +N q .

Эффективность получения водорода в ЭВГ равна отношению полезно полученной энергии водорода N w к затраченной в двигателе N d:

h =N w ּк /N d

где к учитывает неизвестное пока увеличение производительности ЭВГ в условиях воздействия центробежных сил и электромагнитного поля.

Несомненным преимуществом ЭВГ является возможность его автономного использования, когда отпадает необходимость длительного хранения и транспорта водорода.

Результаты испытаний ЭВГ

К настоящему времени проведены успешные испытания двух модификаций ЭВГ, подтвердившие обоснованность разработанной модели процесса электролиза и работоспособности изготовленной модели ЭВГ.

Перед испытаниями была проверена возможность регистрации водорода с помощью газоанализатора АВП-2 , датчик которого реагирует только на присутствие водорода в газе. Выделяющийся в ходе активной химической реакции Zn+H 2 SO 4 =H 2 +ZnSO 4 водород подавался к АВП-2 с помощью вакуумного компрессора ДС112 по хлорвиниловой трубке диаметром 5 мм и длиной 5м. При начальном уровне фона показаний V o =0.02 % об. АВП-2 после начала химической реакции объемное содержание водорода увеличилось до V=0.15 % об., что подтвердило возможность обнаружения газа в этих условиях.

При испытаниях 12-18.02.2004 г. в корпус ротора был залит подогретый до 60 о С раствор серной кислоты (концентрацией 4 моль/л), нагревший ротор до 40 о С. Результаты экспериментальных исследований показали следующее:

1. При вращении электролита (концентрацией 4 моль/л) центробежной силой удалось разделить положительные и отрицательные ионы различного молекулярного веса и образовать заряды в отстоящих друг от друга областях, что привело к возникновению разности потенциалов между этими областями, достаточной для начала электролиза при замыкании тока во внешней электрической цепи.

2. После преодоления электронами потенциального барьера на границе металл- электролит при числе оборотов ротора n=1000…1500 об/мин в начался электролиз воды. При 1500 об/мин анализатором водорода АВП-2 зафиксирован выход водорода V=6…8 % об. в условиях подсоса воздуха из окружающей среды.

3. При снижении оборотов до 500 об/мин электролиз прекращался и показания газоанализатора возвращались к начальным V 0 =0.02…0.1 % об.; при увеличении оборотов до 1500 об/мин объемное содержание водорода снова возрастало до V=6…8 % об..

При скорости вращения ротора 1500 об/мин обнаружено увеличение выхода водорода в 20 раз при возрастании температуры электролита от t=17 о до t=40 о С.

Заключение

  1. Предложена, изготовлена и успешно испытана установка для проверки обоснованности нового предложенного способа разложения воды в поле центробежных сил. При вращении сернокислотного электролита (концентрацией 4 моль/л) в поле центробежных сил произошло разделение положительных и отрицательных ионов различного молекулярного веса и образовались заряды в отстоящих друг от друга областях, что привело к возникновению разности потенциалов между этими областями, достаточной для начала электролиза при замыкании тока во внешней электрической цепи. Начало электролиза зафиксировано при числе оборотов ротора n=1000 об/мин.
    При 1500 об/мин водородный газоанализатор АВП-2 показал выделение водорода в объемных процентах 6…8 об.%.
  2. Проведен анализ процесса разложения воды. Показано, что под действием центробежного поля во вращающемся электролите возможно возникновение электромагнитного поля и формирование источника электроэнергии. При определенных оборотах ротора (после преодоления потенциального барьера между электролитом и электродами) начинается электролиз воды. Установлено, что электролиз воды в центробежном генераторе происходит в условиях, существенно отличающихся от существующих в обычных электролизерах:
    - увеличении скорости движения и давления по радиусу вращающегося электролита (до 2 МПа);
    - активном воздействии на движение ионов электромагнитных полей, наведенных вращающимися зарядами;
    - поглощении тепловой энергии из окружающей среды.
    Это открывает новые возможности увеличения эффективности электролиза.
  3. В настоящее время ведется разработка следующей более эффективной модели ЭВГ с возможностью измерения параметров вырабатываемого электрического тока, формирующегося магнитного поля, управления током в процессе электролиза, измерением объемного содержания выходящего водорода, его парциального давления, температуры и расхода. Использование этих данных вместе с уже измеряемой электрической мощностью мотора и числом оборотов ротора позволит:
    - определить энергетическую эффективность ЭВГ;
    - разработать методику расчета основных параметров в условиях промышленного применения;
    - наметить пути его дальнейшего совершенствования;
    - выяснить пока слабо изученное влияние на электролиз больших давлений, скоростей и электромагнитных полей.
  4. Промышленная установка может быть использована при получении водородного топлива для питания двигателей внутреннего сгорания или иных энергетических и тепловых установок, а также кислорода для технологических нужд в различных отраслях промышленности; получении гремучего газа, например, для газоплазменной технологии в ряде отраслей промышленности и т.д.
  5. Несомненным преимуществом ЭВГ является возможность автономного использования, когда отпадает необходимость технически сложного длительного хранения и транспорта водорода.
  6. Технология получения достаточно дешевого водорода из воды с использованием бросовой низкопотенциальной тепловой энергии и выделение при последующем сжигании экологически чистых отходов (снова воды) казались несбыточной мечтой, но с внедрением в практику ЭВГ станут реальностью.
  7. На изобретение получен ПАТЕНТ № 2224051 от 20.02.2004 г..
  8. В настоящий момент патентуется покрытие анода и катода, а также электролита, что позволит увеличить производительность электролиза в десятки раз.

Список использованных источников

  1. Фриш С.Э., Тиморева А.И. Курс общей физики, Том 2, М. –Л., 1952, 616 с.
  2. Краснов К.С., Воробьев Н.К, Годнев И.Н. и др. Физическая химия. Электрохимия. Химическая кинетика и катализ, М.,“Высшая школа”,2001,219 с.
  3. Шпильрайн Э.Э., Малышенко С.П., Кулешов Г.Г. Введение в водородную энергетику, 1984,10.
  4. Путинцев Н.М. Физические свойства льда, пресной и морской воды, Докторская диссертация, Мурманск, 1995,
  5. Канарев Ф.М. Вода- новый источники энергии, Краснодар, 2000, 155с,
  6. Зацепин Г.Н. Свойства и структура воды, 1974, 167 с,
  7. Яворский Б.М., Детлаф А.А. Справочник по физике, М., “Наука”, 1971, 939 с.
  8. Economics of Non- conventional Hydrogen Production. The Center for Electrochemical Systems and Hydrogen Research, 2002, Engineer, tamh, edutces/ceshr/center.
  9. Анализатор водорода портативный многофункциональный АВП-2, Фирма “Альфа БАССЕНС”,Кафедра “Биофизика”, МФТИ, М., 2003.
Дата публикации: Прочитано: 60389 раз Дополнительно на данную тему

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Получают в незамкнутом пространстве перегретый водяной пар с температурой 500-550 o C. Перегретый водяной пар пропускают через постоянное электрическое поле высокого напряжения (6000 В) с получением водорода и кислорода. Способ прост в аппаратурном оформлении, экономичен, пожаро- и взрывобезопасен, высокопроизводителен. 3 ил.

Водород при соединении с кислородом-окислении, занимает первое место по калорийности на 1 кг топлива среди всех горючих используемых для поучения электроэнергии и тепла. Но высокая калорийность водорода до сих пор не используется в получении электроэнергии и тепла и не может конкурировать с углеводородным топливом. Препятствием для использования водорода в энергетике является дорогой способ его получения, который экономически не оправдывается. Для получения водорода в основном применяются электролизные установки, которые малопроизводительны и энергия, затраченная на получение водорода, равна энергии, полученной от сжигания этого водорода. Известен способ получения водорода и кислорода из перегретого водяного пара с температурой 1800-2500 o C, описанный в заявке Великобритании N 1489054 (кл. C 01 B 1/03, 1977). Этот способ сложен, энергоемок и трудноосуществим. Наиболее близким к предложенному является способ получения водорода и кислорода из водяного пара на катализаторе при пропускании этого пара через электрическое поле, описанный в заявке Великобритании N 1585527 (кл. C 01 B 3/04, 1981). К недостаткам этого способа относятся: - невозможность получения водорода в больших количествах; - энергоемкость; - сложность устройства и использование дорогих материалов; -невозможность осуществления этого способа при использовании технической воды, т. к. при температуре насыщенного пара на стенках устройства и на катализаторе будут образовываться отложения и накипь, что приведет к ее быстрому выходу из строя; - для сбора полученных водорода и кислорода используются специальные сборные емкости, что делает способ пожаро- и взрывоопасным. Задачей, на которую направлено изобретение, является устранение вышеуказанных недостатков, а также получение дешевого источника энергии и тепла. Это достигается тем, что в способе получения водорода и кислорода из пара воды, включающем пропускание этого пара через электрическое поле, согласно изобретению используют перегретый пар с температурой 500-550 o C и пропускают его через электрическое поле постоянного тока высокого напряжения, вызывая тем самым диссоциацию пара и разделение его на атомы водорода и кислорода. Предложенный способ основан на следующем. 1. Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля. 2. Температура воспламенения водорода от 580 до 590 o C, разложение воды должно быть ниже порога зажигания водорода. 3. Электронная связь между атомами водорода и кислорода при температуре 550 o C еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже не тепла, а энергию электрического поля высокого напряжения. Тогда потенциальная энергия электрического поля преобразуется в кинетическую энергию электрона. Скорость электронов в электрическом поле постоянного тока возрастает пропорционально квадратному корню напряжения, приложенного к электродам. 4. Разложение перегретого пара в электрическом поле может происходить при небольшой скорости пара, а такую скорость пара при температуре 550 o C можно получить только в незамкнутом пространстве. 5. Для получения водорода и кислорода в больших количествах нужно использовать закон сохранения материи. Из этого закона следует: в каком количестве была разложена вода на водород и кислород, в таком же количестве получим воду при окислении этих газов. Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок. Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб. 1. Работа и устройство установки первого варианта (схема 1). Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550 o C. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с. Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с. Один литр воды содержит 124 л водорода и 622 л кислорода, в пересчете на калории составляет 329 ккал. Перед пуском установки стартер разогревается от 800 до 1000 o C /разогрев производится любым способом/. Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550 o C, свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами. В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В. Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм. Труба - электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока. Выход водорода по отношению к кислороду 1:5. 2. Работа и устройство установки по второму варианту (схема 2). Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС/. Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения - "пуск" и "работа". Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1/ до 550 o C. Теплообменник /То/ - труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения. Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки. Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, - образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле: 2H 2 + O 2 = 2H 2 O + тепло В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС. После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения "пуск" переводится в положение "работа", после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя. Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины. Недостаток силовых установок для ВЭС - это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1/, 227 котлов /К2/. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС, дешевой электрической энергии и тепле. 3-й вариант силовой установки (схема 3). Это точно такая же силовая установка, как и вторая. Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м 3 /ч и воду на образование рабочего пара 1620 м 3 /ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550 o C. Давление пара 250 ат. Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВтч. Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м. Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА - 380 х 6000 В. Изобретение имеет следующие преимущества. 1. Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды. 2. Небольшой расход воды при получении электроэнергии и тепла. 3. Простота способа. 4. Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима. 5. Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды. 6. Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода. 7. В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки. 8. Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы. Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое - воду при сохранении мощности этих установок.

Формула изобретения

Способ получения водорода и кислорода из пара воды, включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 - 550 o C, пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.

Похожие патенты:

Изобретение относится к технологии углеграфитовых материалов, в частности к устройству, обеспечивающему возможность получения соединений внедрения в графит сильных кислот (СВГ), например H2SO4, HNO3 и др., путем анодного окисления графита в растворах указанных кислот

Предложенный способо основан на следующем:

  1. Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля.
  2. Температура воспламенения водорода от 580 до 590 o C , разложение воды должно быть ниже порога зажигания водорода.
  3. Электронная связь между атомами водорода и кислорода при температуре 550 o C еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже не тепла, а энергию электрического поля высокого напряжения. Тогда потенциальная энергия электрического поля преобразуется в кинетическую энергию электрона. Скорость электронов в электрическом поле постоянного тока возрастает пропорционально квадратному корню напряжения, приложенного к электродам.
  4. Разложение перегретого пара в электрическом поле может происходить при небольшой скорости пара, а такую скорость пара при температуре 550 o C можно получить только в незамкнутом пространстве.
  5. Для получения водорода и кислорода в больших количествах нужно использовать закон сохранения материи. Из этого закона следует: в каком количестве была разложена вода на водород и кислород, в таком же количестве получим воду при окислении этих газов.

Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок .

Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб.

Первый вариант
Работа и устройство установки первого варианта (схема 1 )

Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550 o C. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с .

Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с.

Один литр воды содержит 124 л водорода и 622 л кислорода , в пересчете на калории составляет 329 ккал .

Перед пуском установки стартер разогревается от 800 до 1000 o C /разогрев производится любым способом/.

Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550 o C , свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами.

В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В . Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм .

Труба — электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока.

Выход водорода по отношению к кислороду 1:5 .

Второй вариант
Работа и устройство установки по второму варианту (схема 2 )

Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС /.

Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения — «пуск» и «работа».

Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1 / до 550 o C . Теплообменник /То / — труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения.

Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки.

Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, — образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле:

2H 2 + O 2 = 2H 2 O + тепло

В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС .

После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения «пуск» переводится в положение «работа», после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя.

Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины.

Недостаток силовых установок для ВЭС — это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1 /, 227 котлов /К2 /. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС , дешевой электрической энергии и тепле.

Третий вариант
3-й вариант силовой установки (схема 3 )

Это точно такая же силовая установка, как и вторая.

Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м 3 /ч и воду на образование рабочего пара 1620 м 3 /ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550 o C . Давление пара 250 ат . Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВт/ч .

Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м . Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА — 380 х 6000 В .

ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА

  1. Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.
  2. Небольшой расход воды при получении электроэнергии и тепла.
  3. Простота способа.
  4. Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.
  5. Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.
  6. Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.
  7. В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.
  8. Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.

Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое — воду при сохранении мощности этих установок.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения водорода и кислорода из пара воды , включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 — 550 o C , пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.