Классификация водорослей. Строение, размножение зеленых и бурых водорослей. Значение водорослей в народном хозяйстве и медицине. Значение водоросли: классификация водорослей в словаре кольера Систематическую классификацию водорослей и мхов

Водные растения делятся на высшие (Cormobionta) и низшие (Thallobionta). К последним относятся все виды водорослей. Они одни из древнейших представителей флоры. Их главная черта - споровое размножение, а особенность заключается в умении приспосабливаться к различным условиям. Существуют такие виды водорослей, которые способны жить в любой воде: солёной, пресной, грязной, чистой. Но для аквариумистов они становятся большой проблемой, особенно в случае их буйного роста.

Существуют такие виды водорослей, которые способны жить в любой воде: солёной, пресной, грязной, чистой.

Основная характеристика

В зависимости от разновидностей водорослей одни прикрепляются к подводным поверхностям, другие свободно живут в воде. Культуры могут содержать только зелёный пигмент, но бывают виды с различными пигментами. Они окрашивают водоросли в розовый, голубой, фиолетовый, красный и почти чёрный цвет.

Биологические процессы, происходящие в аквариуме, являются основанием для самостоятельного появления водорослей. Они заносятся при кормлении рыб живым кормом или вновь приобретёнными водными растениями.

Одни водоросли выглядят, как пушистый пучок, другие напоминают расстелившийся ковёр, третьи - слизистое покрытие. Бывают плоские, слоевищные, ветвящиеся, нитчатые культуры. В отличие от высших растений у них нет корней, стеблей и листьев. Их форма, строение и размеры разнообразные. Встречаются виды, которые можно увидеть только под микроскопом. В природной среде растения достигают нескольких метров в длину.

Классификация водорослей

У каждого вида свои требования к среде, в которой они растут – к температуре жидкости, к интенсивности и длительности освещения. Немаловажным фактором является химический состав воды.

Дисбаланс водорослей в аквариуме говорит о возникновении в нём неблагоприятных условий. Чрезмерное увеличение их в резервуаре ухудшает качество воды, что неблагоприятно сказывается на здоровье обитателей аквариума. Причиной водорослевой вспышки может быть:

  1. Неотрегулированный режим освещения аквариума. Это недостаток светового дня или его избыток.
  2. Излишки органики в ёмкости. Они могут быть в виде остатков корма, отмерших аквариумных растений, рыбных нечистот.
  3. Разложение органики. Появление в аквариуме нитритов и аммиака.

Выявив, какой фактор является причиной появления культур, нужно его устранить или максимально минимизировать.


Дисбаланс водорослей в аквариуме говорит о возникновении в нём неблагоприятных условий.

Водоросли делятся на 12 типов. Для аквариума чаще всего характерно наличие трёх основных видов культур.

Их присутствие предсказуемо там, где есть вода, свет и питательные вещества.

Зелёные группа

Эта самая распространённая и наиболее разнообразная по строению и форме группа растений, которая насчитывает около 7 тыс. видов. Они бывают неклеточной, одно- и многоклеточной формы. Водоросли образуют колонии на стекле или грунте.

Их особенность в том, что практически все культуры появляются в результате избыточного освещения. Они имеют зелёную окраску, несмотря на содержание в них кроме зелёного хлорофилла жёлтого пигмента. Водоросли окрашивают жидкость в зелёный или кирпично-зелёный цвет.

Есть морские и пресноводные виды. Названия водорослей, которые бывают в аквариуме:


Основная причина появления большинства видов зелёных водорослей - избыточное освещение, поэтому при восстановлении биологического баланса эта проблема может быстро исчезнуть.

Диатомовые (бурые) растения

Если жидкость в ёмкости приходится часто менять, потому что она быстро мутнеет, - в ней завелась бурая водоросль . Она не только портит интерьер аквариума, но и причиняет неудобства его жителям. Это одноклеточные микроскопические организмы, которые быстро размножаются и создают склизкий налёт на листьях аквариумных растений и стёклах резервуара. Живут они одиночно или колониями в виде ленты, нити, цепочки, плёнки, кустика.

На начальном этапе появления налёта в ёмкости он легко снимается, а в запущенных случаях становится многослойным, и избавиться от него бывает сложно. Животным аквариума бурые растения не причинят вреда, а для аквариумных растений они опасны. Налёт на культурах мешает фотосинтезировать, что приводит их к гибели.

Размножение диатомеи осуществляется с помощью деления. Клетки растения имеют твёрдую оболочку с кремнезёмным составом. Их размеры минимум 0,75 мкм, максимум 1500 мкм. Эту культуру легко отличить по панцирю в виде точек, камер, штрихов, рёбер, расположенных с геометрической правильностью.


Навикулы обитают практически везде, заводятся весной и осенью.

В природе около 25 тысяч разновидностей бурых культур. Чаще всего в ёмкости встречаются:

  1. Навикула. У этого рода около 1 тыс. видов водорослей. В ёмкости заводятся весной и осенью. Способ размножения - деление клеток. Клетки различны по форме, структуре панциря и строению. Служат кормом для обитателей аквариума, а сами питаются фототрофно.
  2. Пиннулярия. Ранняя осень и лето - время появления для этого рода. В результате деления клеток, каждая получает от материнской клетки одну створку. Одиночные клетки редко соединены в ленты. Известно около 80 видов этих водорослей.
  3. Цимбелла. Род представляет собой одиночные свободноживущие клетки, которые иногда прикрепляются к субстрату слизистой ножкой. Кроме того, они могут быть заключены в студенистые трубки.

Развиваются бурые водоросли в тех резервуарах, где несвоевременно меняется вода или плохое освещение. На их распространение влияет густая заселённость аквариума, большое количество органики, засорённый фильтр.

Красные или «багрянки»

Красные водоросли, или багрянки, это малочисленный вид культур, в подавляющем большинстве многоклеточный, насчитывающий до 200 разновидностей. Все багрянки делятся на 2 класса, каждый из которых содержит по 6 порядков. Поселяются они на стеблях и концах листьев аквариумных растений, камнях, быстро растут и интенсивно размножаются.

Причиной появления этого вида растений является избыток органики в воде, неправильно установленное освещение или перенаселение в ёмкости. Эти культуры представляют опасность для его жителей, поэтому их необходимо своевременно уничтожать.

Багрянки в зависимости от сочетания пигментов меняют цвет от ярко-красного до голубовато-зелёного и жёлтого, а пресноводные обычно зелёные, голубые или буровато-чёрные. Особенностью растений является их сложный цикл развития. Как правило, эти культуры растут прикреплёнными к другим растениям, камням, резервуарам. Можно встретить колонии культур в виде слизистых налётов.


Красные водоросли, или багрянки, это малочисленный вид культур, в подавляющем большинстве многоклеточный, насчитывающий до 200 разновидностей.

Для аквариумистов катастрофой являются два вида:

  1. Чёрная борода . На начальном этапе представляет собой одиночные чёрные кустики, которые концентрируются в одном месте, или они могут быть разбросаны по всему резервуару. Если с ней не начать бороться, то с помощью ризоидов культура цепляется к субстрату, как бы врастая в него. Очень часто эти водоросли появляются после покупки новых аквариумных растений, или если пренебречь правилами ухода за резервуаром.
  2. Вьетнамка . Такие аквариумные водоросли относятся к нитчатым видам. Исходя из их внешнего вида аквариумисты называют их кустом, бородой или щёткой. Растения имеют различную расцветку и очень быстро размножаются спорами. Культура предпочитает располагаться на кончиках аквариумных растений или декоре резервуара.

Появление любого вида водорослей говорит о проблемах микроклимата в резервуаре. На борьбу с одними растениями уходят месяца, а от других быстро и легко можно избавиться.

3.2. Водоросли (Algae)

3.2.1. Основные признаки и систематика водорослей

Водоросли - огромная группа растений, имеющих большое биологическое значение и очень важных для человечества (разд. 3.2.8). Они являются самыми примитивными из растений, и у них нет разделения тела на стебель, корень и листья. Поэтому первоначально их объединяли вместе с грибами в отдел Thallophyta (см. примечание на с. 43). Однако после новых научных открытий стало ясно, что водоросли ничуть не менее разнообразны, чем все остальные группы растений, вместе взятые, и что у них очень мало общих признаков. Вероятно, лучше всего считать водорослями все фотосинтезирующие организмы, выделяющие кислород, которые эволюционировали в водной среде и полностью освоили ее. Правда, некоторые водоросли вышли и на сушу, но в масштабах планеты продуктивность прибрежных и наземных форм ничтожна в сравнении с продуктивностью океанических и пресноводных водорослей. Если придерживаться такой точки зрения, то в группу водорослей следует включить и сине-зеленые водоросли (Cyanophyta). Однако, поскольку эти водоросли - прокариоты, было предложено называть их цианобактериями (Cyanobacteria), чтобы как-то отличить от эукариотических водорослей. При этом из виду упускают один очень важный факт, а именно то, что сине-зеленые водоросли при фотосинтезе выделяют кислород, а все остальные фотосинтезирующие прокариоты - нет. Для того чтобы вода могла расщепиться на водород и кислород, необходимо наличие хлорофилла и фотосистемы II (разд. 9.4.2), что является важным преимуществом перед фотосинтезирующими бактериями. О том, как было достигнуто такое преимущество, известно очень мало, хотя и обнаружены некоторые формы, занимающие промежуточное положение между сине-зелеными водорослями и бактериями. Такое истолкование связи между сине-зелеными водорослями и другими растениями, в том числе и остальными водорослями, подкрепляют данные, свидетельствующие в пользу симбиотической теории, согласно которой хлоропласты растений произошли из сине-зеленых водорослей (разд. 9.3.1).

Подводя итог, можно сказать, что термин "водоросль" сам по себе удобен, но его применение в систематике вносит ненужные осложнения. Сине-зеленые водоросли следует относить к прокариотам, а все остальные водоросли - к эукариотам.

К счастью, эукариотические водоросли вполне естественно распадаются на хорошо различимые группы, причем основным отличительным признаком является набор фотосинтетических пигментов. В современной систематике такие группы получили статус отделов. Родственные связи между отделами до сих пор не выяснены, а этот вопрос очень важен, чтобы понять происхождение высших растений и связь между прокариотами и эукариотами.

Все отделы перечислены на рис. 3.11, а на рис. 3.12 даны современные представления о том, какие связи существуют между этими отделами. Основные признаки водорослей и некоторых главных отделов приведены в табл. 3.4.

3.2.2. Бесполое размножение водорослей

У водорослей наблюдается как бесполое, так и половое размножение. Ниже кратко перечислены основные типы бесполого размножения от самого простого до самого сложного.

Вегетативное размножение . У некоторых колониальных форм колонии могут дробиться на отдельные фрагменты, которые дают начало новым более мелким колониям. У более крупных водорослей, например у Fucus, на главном талломе могут образовываться дополнительные талломы, которые отламываются и образуют новые организмы.

Фрагментация . Это явление наблюдается у нитчатых водорослей, таких, как сине-зеленые водоросли и Spirogyra. Нить расщепляется строго определенным образом вдоль, и образуются две новые нити. Это явление можно рассматривать как одну из форм вегетативного размножения.

Бинарное деление . В этом случае одноклеточный организм делится на две одинаковые половины, при этом ядро делится митотически. Продольное деление такого типа наблюдается у Euglena.

Зооспоры . Это подвижные споры, имеющие жгутики. Они образуются у многих водорослей, например у Chlamydomonas, и у некоторых грибов (см. Oomycota, табл. 3.2).

Апланоспоры . Эти неподвижные споры образуются, например, у некоторых бурых водорослей.

3.2.3. Половое размножениеводорослей

При половом размножении объединяется генетический материал двух отдельных особей одного и того же вида. Самый простой способ такого размножения у водорослей; он заключается в слиянии двух морфологически (т. е. структурно) идентичных гамет. Такой процесс называется изогамией , а гаметы - изогаметами . Изогамны Spirogyra и некоторые виды Chlamydomonas.

Если одна из гамет менее подвижна или крупней, чем другая, то такой процесс называют анизогамией . У Spirogyra гаметы не отличаются по строению, но одна из них двигается, а другая неподвижна. Это можно рассматривать как физиологическую анизогамию. Существует еще один вариант, когда одна гамета большая и неподвижная, а вторая небольшая и подвижная. Такие гаметы называются женскими и мужскими, а сам процесс называется оогамией . Оогамны Fucus и некоторые виды Chlamydomonas. Женские гаметы крупные потому, что в них находится запас питательных веществ, необходимых для развития зиготы после оплодотворения.

Все три типа полового размножения соответствуют увеличению сложности строения тела, и поэтому оогамия, хотя и встречается у некоторых простых водорослей, таких, как Chlamydomonas, в целом более распространена у более сложных водорослей, например у представителей Phaeophyta. Оогамия - это единственный способ полового размножения у растений, более высоко организованных, чем водоросли.

К сожалению, терминология, применяемая для описания гамет и органов полового размножения растений, очень запутана, особенно у водорослей. Ниже мы объясним только основные термины.

У грибов и низших растений (водорослей, мохообразных и папоротникообразных) гаметы образуются в особых структурах, которые называют гаметангиями . Мужской гаметангий называется антеридием, а женский - оогонием или архегонием.

Оогоний * - это простой женский гаметангий, который встречается у многих водорослей и грибов, а женские гаметы или гаметы, которые находятся в нем, называют оосферами . Оплодотворенная оосфера называется ооспорой ; она превращается в толстостенную покоящуюся спору, способную переживать неблагоприятные условия. Общее название для женской гаметы - яйцо или яйцеклетка , хотя иногда для обозначения яйцеклетки используют термин "оосфера"; однако это не совсем точно.

* (Оогониями называют также клетки яичников, из которых образуются ооциты у животных (см. гл. 20). )

Архегоний - это более сложный женский гаметангий, который характерен для мохообразных, папоротникообразных и многих голосеменных; архегоний будет описан далее в этой главе.

В антеридии образуются мужские гаметы, которые называются антерозоидами или сперматозоидами . Они подвижны, потому что снабжены одним или несколькими жгутиками. Такие гаметы характерны для грибов, водорослей, мохообразных, папоротникообразных и некоторых голосеменных. У животных мужские гаметы называются сперматозоидами или спермиями . Перечисленные названия приведены на рис. 3.13.

Для тех целей, которые стоят перед нами в этой главе, не столь важно, как называть разные гаметы одного и того же пола, поэтому вполне достаточно различать сперматозоиды, т. е. все мужские гаметы, и яйцеклетки, т. е. все женские гаметы.

Как и у грибов, у некоторых водорослей наблюдается гетероталличность (разд. 3.1.3).

3.2.4. Отдел Chlorophyta

Основные свойства Chlorophyta перечислены в табл. 3.4.


Таблица 3.4. Систематика и основные признаки некоторых главных групп водорослей 1)

1) (Звездочкой отмечен систематический признак. )

Chlamydomonas (хламидомонада) - одноклеточная подвижная водоросль, которая живет главным образом в стоячей воде, т. е. в прудах и канавах, особенно если вода еще и обогащена растворимыми азотистыми соединениями, например стоками со скотных дворов. Клетки этой водоросли часто встречаются в таком огромном количестве, что вода становится зеленой. Некоторые виды живут в морской воде или в солоноватых лиманах.

Строение

Хламидомонада совсем не похожа на растение, так как она активно движется и у нее имеются пульсирующие вакуоли. Строение хламидомонады изображено на рис. 3.14. На электронной микрофотографии видны типичные для эукариот органеллы: аппарат Гольджи, митохондрии, рибосомы и мелкие вакуоли. В хлоропластах многих водорослей выявлена особая структура - пиреноид . Это - белковое образование, состоящее главным образом из рибулозобисфосфаткарбоксилазы - фермента, который осуществляет фиксацию двуокиси углерода. Пиреноид участвует в запасании углеводов, например крахмала. Красный глазок воспринимает изменения в интенсивности освещения, и клетка либо перемещается туда, где интенсивность света оптимальна для фотосинтеза, либо остается на месте, если освещенность достаточна. Такая ответная реакция на свет называется фототаксисом (разд. 15.1.2). Клетка хламидомонады передвигается за счет биения двух жгутиков и ввинчивается в воду, как штопор, вращаясь вокруг продольной оси.


Рис. 3.14. A. Chlamydomonas в световом микроскопе; х 600. Б. Схема строения Chlamydomonas. В. Электронная микрофотография Chamydomonas reinhardtii. × 1400

Жизненный цикл

Жизненный цикл Chlomydomonas изображен на рис. 3.15. Взрослая особь гаплоидна.

Бесполое размножение

Бесполое размножение осуществляется с помощью зооспор. Родительская клетка теряет жгутики, и протопласт клетки делится на два-четыре дочерних протопласта (обычно на четыре). В это же время происходит митотическое деление ядра; кроме того, делится и хлоропласт. У дочерних протопластов образуются новые клеточные стенки, новые глазки и новые жгутики. В образовании новых жгутиков участвуют центриоли (базальные тельца). Клеточная стенка родительской клетки ослизняется, и дочерние клетки, которые теперь называют зооспорами, выходят наружу. Из каждой зооспоры вырастает полноценная взрослая клетка Chlamydomonas. Этот процесс изображен на рис. 3.16, А.

Половое размножение

Одни виды Chlomydomonas - гомоталличны, другие - гетероталличны; при этом разные виды могут быть изогамными, анизогамными или оогамными. Размножение изогамных видов изображено на рис. 3.16, Б. При прорастании ядро зиготы первый раз делится мейотически, при этом восстанавливается гаплоидное состояние, свойственное взрослым организмам. Высвободившиеся молодые клетки Chlomydomonas можно называть зооспорами, пока они полностью не созреют.

В прудах и других водоемах с непроточной, но чистой водой живет еще одна водоросль - неветвящаяся нитчатая водоросль Spirogyra. Большая часть видов спирогиры - плавающие формы, а нити у нее слизистые и скользкие.

Строение

Цилиндрические клетки спирогиры соединены торец в торец и образуют нить, изображенную на рис. 3.17. Все клетки идентичны, и между ними не наблюдается разделения функций. Тонкий слой цитоплазмы лежит по периферии клетки, а большая вакуоль как бы обмотана тяжами цитоплазмы. Такие тяжи удерживают ядро в центре клетки. Один или несколько спиралевидных хлоропластов лежат в тонком постенном слое цитоплазмы.

Рост и размножение

Нити спирогиры растут интеркалярно, т. е. за счет деления любой из клеток, входящих в состав нити, независимо от того, где находится эта клетка. У большинства же растений зона роста ограничена верхушечной областью. Ядро клетки спирогиры делится митотически, затем из выростов боковых стенок образуется новая поперечная клеточная стенка. Получаются две дочерние клетки, которые вырастают до нормальных размеров, в результате чего вся нить увеличивается в длину.

Как мы уже отмечали (разд. 3.2.1), бесполое размножение происходит путем фрагментации.

Половое размножение осуществляется весьма специфическим способом, характерным для нитчатых водорослей: две нити располагаются бок о бок и супротивные клетки обеих нитей соединяются короткими трубчатыми выростами. Все содержимое клетки ведет себя как гамета; процесс этот можно рассматривать как анизогамный, поскольку, хотя обе гаметы и идентичны морфологически, только одна из них подвижна и перетекает в другую клетку через соединительную трубку. Такой процесс называется конъюгацией.

3.2.5. Отдел Phaeophyta

Основные признаки Phaeophyta перечислены в табл. 3.4.

У скалистых берегов Британского побережья часто встречаются разные водоросли из рода Fucus. Они очень хорошо приспособились к достаточно суровым условиям литоральной зоны, т. е. той зоны, которая попеременно то обнажается при отливе, то снова покрывается водой.

Наиболее известны три вида Fucus, которые чаще других встречаются у побережья в трех разных зонах на разной глубине; такое явление называется зональным распределением . Эти водоросли распределяются по зонам в соответствии с их способностью выдерживать пребывание на воздухе. Перечислим основные признаки, по которым их можно узнать, и места на берегу, где их можно найти:

F. spiralis (эти плоские водоросли выбрасывает на берег море) - у высшей точки прилива. В погруженном состоянии таллом слегка закручен в спираль.

F. serratus (то, что называют обыкновенными, зубчатыми или пильчатыми водорослями) - в средней приливной зоне. Края таллома зазубрены.

F. vesiculosus (так называемые пузырчатые водоросли) - у высшей точки отлива. Имеются воздушные пузыри, которые обусловливают плавучесть. На рис. 3.18 можно видеть характерные внешние признаки F. vesiculosus, а на рис. 3.19 изображены основные особенности его внутреннего строения.


Рис. 3.18. Внешнее строение Fucus vesiculosus. Отмечены характерные признаки и, в частности, приспособления к окружающей среде. Плодущий конец (рецептакул) представляет собой набухшую и покрытую мелкими вздутиями (скафидиями или концептакулами), сообщающимися с наружной средой только узкими отверстиями, часть таллома. У женских растений плодущие концы темно-зеленые, у мужских оранжевые. Воздушные пузыри обычно парные и придают водоросли плавучесть. Придаточные ответвления (иногда отламываются; это одна из форм вегетативного размножения). Верхушечная клетка представляет собой точку роста, где происходит деление клеток. Ребро - это жесткое образование, которое выполняет механические функции и, возможно, участвует в переносе некоторых веществ. Пластинка плоская и упругая (кожистая); зеленовато-коричневого цвета из-за близкого к поверхности фотосинтезирующего слоя; покрыта слизью, предохраняющей от высыхания при отливе. Ребро вместе с пластинкой образуют таллом. Укореняющаяся часть таллома (в данном случае базальный диск ) бесцветна и очень прочно прикрепляет таллом к скалам и т. п. Размеры водоросли варьируют в пределах до 1 м или более. Слоевище плоское и ремневидное; характер ветвления таков, что сопротивление волнам сводится к минимуму; воздушные пузыри поддерживают слоевище у поверхности, что способствует фотосинтезу. Черешок - это в основном ребро; черешок гибкий и потому успешно противостоит волнам

В теле водоросли, или талломе, наблюдается некоторое разделение функций между разными тканями. Эта тенденция у Phaeophyta прослеживается лучше, чем у всех остальных групп водорослей. Приспособления водорослей к окружающей среде мы рассмотрим чуть позже.

Органы размножения

Половое размножение оогамное. F. vesiculosus и F. serratus - двудомные растения, т. е. у них есть и мужские, и женские особи. F. spiralis - гермафродит, у которого на одном растении в одних и тех же вместилищах - скафидиях, или концептакулах, - находятся и мужские, и женские репродуктивные органы. Репродуктивные органы развиваются внутри скафидиев на "плодущих" кончиках некоторых слоевищ. В каждом скафидии имеется узкое отверстие (пора), через которое впоследствии высвобождаются наружу репродуктивные органы. Их строение показано на рис. 3.19.

Взрослые растения диплоидные, а гаметы образуются в результате мейотического деления.

Приспособления к окружающей среде

Прежде чем мы рассмотрим приспособления Fucus к среде обитания, следует сказать несколько слов о самой среде, которая достаточно враждебна. Будучи растениями приливно-отливной зоны, разные водоросли в разной степени подвергаются воздействию воздушной среды во время отлива. Поэтому у них должны быть защитные приспособления от высыхания. К тому же и температура очень резко меняется, когда холодные морские волны вливаются в прогретые лужицы, оставшиеся после отлива. Растения должны быть приспособлены и еще к одному фактору, а именно к резким изменениям солености воды, будь то ее увеличение при испарении из небольших водоемов, образовавшихся после отлива, или ее уменьшение во время дождя. Для того чтобы противостоять таким факторам, как приливы, отливы, прибой и удары волн, нужна достаточная механическая прочность. Большие волны начинают перекатывать камни, и это может очень сильно повредить растения.

Морфологические приспособления (общее строение)

Слоевище водоросли прочно прикреплено к грунту укореняющейся частью таллома (ризоидами или базальным диском) (рис. 3.18). Оно настолько прочно связывается с грунтом (обычно это камни), что водоросль чрезвычайно трудно оторвать от него. Как правило, первым не выдерживает камень, а не укореняющаяся часть таллома.

Таллом водорослей не сплошной, а рассеченный; он дихотомически ветвится в одной плоскости, и это позволяет свести к минимуму сопротивление толще воды. К тому же он прочный и упругий, но не жесткий. Ребра слоевища крепкие и гибкие.

У плавучей водоросли F. vesiculosus имеются специальные воздушные пузыри, которые удерживают слоевище у поверхности воды, т. е. в условиях, способствующих максимальному улавливанию света для фотосинтеза.

Физиологические приспособления

Среди фотосинтетических пигментов преобладает бурый пигмент - фукоксантин . Это - одно из приспособлений к фотосинтезу под водой, так как фукоксантин сильно поглощает синий свет, который проникает в толщу воды гораздо дальше, чем более длинноволновые лучи, например красные.

Таллом выделяет много слизи, которая заполняет все внутренние полости водоросли и просачивается наружу. Слизь помогает лучше удержать воду и препятствует обезвоживанию.

Осмотическое давление в клетках намного выше, чем в морской воде, поэтому осмотических потерь воды не наблюдается.

Приспособления к половому размножению

Выход гамет синхронизирован с приливами. Во время отлива таллом обсыхает, и из скафидиев наружу выдавливаются репродуктивные органы, которые от высыхания предохраняются слизью. Во время прилива стенки репродуктивных органов растворяются, высвобождая гаметы. Мужские гаметы подвижны и обладают положительным хемотаксисом в отношении веществ, выделяемых женскими гаметами.

Развитие зиготы происходит сразу же после оплодотворения, что сводит к минимуму риск быть унесенной в океан.

3.2.6. Отдел Euglenophyta

Основные признаки Euglenophyta приведены в табл. 3.4. Для этого отдела характерны признаки как растений, так и животных, что сильно затрудняет классификацию относящихся сюда организмов. По этой причине их обычно включают в свои систематические схемы и ботаники, и зоологи. Эти проблемы мы обсудим позднее, после описания рода Euglena.

Euglena - самая обычная одноклеточная водоросль, живущая в пресноводных прудах, канавах и любых других водоемах, богатых растворенными органическими соединениями. Как и Chlamydomonas, она иногда размножается так интенсивно, что вода становится зеленой, потому что среди пигментов эвглены преобладает хлорофилл. Строение эвглены показано на рис. 3.20, где отмечены и некоторые ее особенности.


Рис. 3.20. Строение Euglena gracillis. Канал - место, через которое поступает пища у незеленых видов; пелликула здесь отсутствует, что позволяет заглатывать мелкие частички. Глазок (стигма) имеет красный цвет; участвует в реакции фототаксиса. Фоторецептор обнаруживает источник света и заставляет организм плыть в направлении оптимальной освещенности (фототаксис); направление движения может меняться при затенении фоторецептора. Длинный жгутик используется для локомоции; обычно направлен вперед; волнообразные движения проходят по жгутику от основания к кончику; жгутик тащит за собой клетку; во время движения вперед клетка вращается вокруг своей оси, оставляя за собой штопорообразный след. Пульсирующая вакуоль окружена вспомогательными вакуолями; участвует в осморегуляции, выкачивая в резервуар избыток воды, поступившей в клетку в результате осмоса. Короткий жгутик не участвует в локомоции. Парамилоновая гранула образована полимером глюкозы, похожим на крахмал и являющимся запасным углеводом. Пелликула располагается под плазматической мембраной ; гибкая. Хлоропласты содержат фотосинтетические пигменты. В цитоплазме находятся сократительные волокна, которые обусловливают перистальтические волны деформации клетки; такое движение называется эвгленоидным

У Euglena нет клеточной стенки. Снаружи клетка покрыта плазматической мембраной, сразу же под которой находится белковая пелликула . Пелликула довольно гибкая, и это позволяет клетке принимать разную форму. Пелликула полностью окружает цитоплазму, и ее можно рассматривать как своего рода наружный скелет . Она состоит из ряда утолщенных продольных полосок и микрофибрилл, переплетенных между собой. Когда внутри цитоплазмы сокращаются крошечные фибриллы, которые называются мионемами , полоски пелликулы начинают скользить относительно друг друга, в результате чего изменяется форма тела. Это явление называется эвгленоидным движением . Другой, более обычный для эвглены способ передвижения за счет вращения длинного жгутика изображен на рис. 3.20 (рассмотрите глазок, фоторецептор и длинный жгутик) и подробно описан в разд. 17.6.3.

Бесполое размножение происходит посредством продольного деления клетки надвое. Полового размножения не наблюдается.

Питание

Зеленые виды Euglena автотрофны и синтезируют все необходимые им вещества из двуокиси углерода, воды и минеральных солей. Вместе с тем они нуждаются в поступлении извне витаминов В1 и В12, которые они не могут синтезировать сами. В этом Euglena не отличается от животных, хотя такая потребность в витаминах характерна и для многих других водорослей.

У нескольких видов Euglena хлорофилла нет, и поэтому они не окрашены и не способны к фотосинтезу (т. е. гетеротрофны). Питаются они по типу сапрофитов, переваривание происходит вне клетки. Когда водоем загрязнен, они процветают, так как разлагающийся материал богат органическими соединениями. Другие бесцветные формы способны заглатывать мелкие частички пищи, для чего у них имеется своеобразная "глотка", где отсутствует пелликула. Затем эти частички перевариваются внутри клетки (голозойное питание, разд. 10.1.1). Пища загоняется в глотку за счет движения жгутиков. Эти виды во многом напоминают простейшее Реrапеmа (разд. 4.1.1).

Если зеленые клетки Euglena долго держать в темноте, то хлоропласты исчезают, и клетки становятся бесцветными. Если в среде достаточно органических веществ, то клетки могут долго жить как сапрофиты. Когда их переносят на свет, снова появляется хлорофилл.

Проблемы систематики Euglena

Как мы уже говорили и как это следует из табл. 3.1, для Euglena характерны признаки и растений, и животных. Один из таких животных признаков, который мы еще не рассматривали, - это наличие в глазке астаксантина - пигмента, свойственного животным.

Легкость, с которой некоторые эвглены могут переходить из зеленой формы в бесцветную и наоборот, свидетельствует о том, что постоянно бесцветные виды, по-видимому, произошли от зеленых. Если впоследствии у бесцветных форм возникли специальные приспособления для голозойного питания, подобные тем, которые имеются у Peranema, то вполне возможно, что предки простейших были похожи на растения. Не следует забывать, однако, что эволюция могла идти и в обратном направлении, ведь мы уже обсуждали в начале этой главы возможность того, что предки растений могли быть похожи на животных (т. е. на гетеротрофных эукариот).

Решая вопрос о том, в царство растений или в царство животных помещать Euglena, необходимо помнить, что некоторые признаки животных имеются и у хламидомонады, и тем не менее ее обычно относят к растениям. Основные затруднения систематиков связаны со способом питания. Судя по всему, эвглену все же следует относить к растениям, так как наличие хлоропластов считается уникальной особенностью, присущей только царству растений. Все это, однако, лишний раз напоминает нам, сколь трудно навязать природе искусственную систематику, придуманную людьми.

3.3. Составьте таблицу растительных и животных признаков Euglena. Воспользуйтесь для этого табл. 3.1, рис. 3.20 и сведениями, изложенными выше.

3.2.7. Направления эволюции водорослей

Даже тех нескольких примеров, которые мы рассмотрели в предыдущих разделах, вполне достаточно, чтобы понять, что существует множество типов водорослей, включая и такие одноклеточные формы, как Chlamydomonas, и такие сравнительно крупные организмы, как Fucus, у которых тело дифференцировано и наблюдается определенное разделение функций между отдельными тканями. У некоторых крупных бурых водорослей имеются даже проводящие ткани, хотя настоящей проводящей ткани - ксилемы и флоэмы - у них нет.

У водорослей четко прослеживается тенденция к усложнению процесса полового размножения от простой изогамии и анизогамии к оогамии. Однако следует с большой долей осторожности использовать ту или иную тенденцию для объяснения эволюционных взаимосвязей между отдельными группами водорослей. Такие взаимосвязи до сих пор окончательно не выяснены, а группа Chlorophyta (зеленые водоросли), от которой, как полагают, произошли наземные растения, отличается очень большим разнообразием: в ней есть и простые одноклеточные формы, и гораздо более сложные, а половое размножение также варьирует от изогамии до оогамии.

3.2.8. Значение водорослей

Роль водорослей в биосфере

По современным оценкам, на долю океана приходится по меньшей мере половина мировой первичной продукции, выражающейся в количестве фиксированного углерода. Эту первичную продукцию образуют водоросли - единственные растения, которые населяют океан. Учитывая ту огромную площадь, которую занимает океан, следует ожидать, что его продуктивность должна быть еще больше, но нельзя забывать, что фотосинтез возможен только в поверхностных слоях, куда проникает свет и где лимитирующим фактором является доступность биогенных элементов, особенно азота и фосфора.

Водоросли - очень важные первичные продуценты (гл. 12), с которых начинается большинство пищевых цепей, в том числе практически все морские и многие пресноводные цепи. Эти цепи через зоопланктон * , ракообразных и т. п. доходят до рыб. Многие микроскопические водоросли - одноклеточные, и именно они являются главным компонентом фитопланктона * .

* (Планктон это мельчайшие растения (фитопланктон) и животные (зоопланктон), которые свободно плавают в поверхностных слоях океанов и озер. Планктон имеет очень большое хозяйственное и экологическое значение. )

Фиксация углерода - это только одно из следствий фотосинтеза (разд. 9.2). Кроме того, благодаря фотосинтезу поддерживается уровень кислорода в атмосфере, при этом по меньшей мере половину всего кислорода выделяют водоросли, и их вклад в этот процесс намного больше, чем вклад наземных лесов.

Альгиновая кислота, агар и каррагенан

Из водорослей получают многие полезные продукты, например альгиновую кислоту, агар и каррагенан. Альгиновая кислота и ее производные (альгинаты) - это полисахариды, которые экстрагируют из срединной пластинки и клеточных стенок таких бурых водорослей, как Laminaria, Ascophyllum и Macrocystis. Водоросли добывают в большом количестве в прибрежных мелких водах; Macrocystis, например, собирают на побережье Калифорнии. Очищенные альгинаты не токсичны и легко образуют гели. Их широко применяют в качестве отвердителей и желеобразующих веществ для получения промышленных товаров (например, в косметике - для изготовления кремов для рук); в качестве эмульгаторов - для приготовления мороженого; в качестве желеобразующих веществ - в кондитерской промышленности; при изготовлении лаков, красок и лекарств; для получения глазурованной керамической посуды.

Агар - полисахарид, который получают из красных водорослей. Он образует такие же гели, как и альгинаты, но, возможно, более известен, так как является очень удобной средой для выращивания бактерий и грибов. С этой целью готовят разбавленный раствор агара, затем добавляют в него различные питательные вещества, стерилизуют и дают застыть, получая желеобразную массу. Кроме того, агар используют для тех же самых целей, что и альгинаты.

Каррагенан (карраген) - это еще один полисахарид клеточной стенки, который получают главным образом из красной водоросли Chondrus crispus. По своей химической структуре он очень похож на агар и применяется для тех же самых целей.

Диатомит (кизельгур)

Водоросли, относящиеся к отделу Bacillariophyta, в основном одноклеточные; их называют диатомовыми . Для этих водорослей характерно особое строение клеточной стенки, в которой содержится кремний. После гибели клеток остатки диатомей падают на дно морей и озер, и постепенно там накапливаются большие отложения. Образующаяся таким образом "диатомовая земля" содержит очень много (до 90%) кремния. После соответствующей очистки эту "землю" можно использовать как превосходный фильтрующий материал (например, при получении сахара или для осветления пива), как наполнитель при изготовлении красок или бумаги и как изоляционный материал, способный противостоять резким перепадам температуры.

Удобрение

На фермах, расположенных вблизи побережья, крупные водоросли (красные и бурые) по традиции используют как удобрения, хотя и в незначительных масштабах. Водоросли богаты калием, но в них гораздо меньше азота и фосфора, чем в простом навозе. Поэтому их удобряющее действие не очень велико. Более значимую роль играют свободноживущие сине-зеленые водоросли, которые являются очень важными азотфиксаторами и довольно распространены в почве (разд. 9.11.1).

Пищевые продукты

Некоторые водоросли подают прямо к столу, особенно на Дальнем Востоке. Красную водоросль Porphyra, считающуюся деликатесом, и большую бурую водоросль Laminaria обычно едят в сыром виде или же готовят из них разные блюда. В Южном Уэльсе Porphyra кладут в одно из традиционных блюд, для приготовления которого отваренные водоросли смешивают с овсянкой и потом все это тушат в масле. В поисках новых источников пищи много внимания было уделено промышленному культивированию водорослей. Однако для получения новых пищевых продуктов годятся очень немногие водоросли, и до сего времени сколько-нибудь значимые успехи в этой области были достигнуты при культивировании бактерий и грибов. Из сине-зеленых водорослей многообещающей считается Spirulina.

Очистка сточных вод

Водоросли вносят определенный вклад в работу микроорганизмов по очистке сточных вод, так как в сточных водах содержатся питательные вещества не только для бактерий, грибов и простейших, но и для микроскопических зеленых водорослей. Они особенно полезны в открытых "окислительных прудах", которые достаточно широко используются в тропических и субтропических странах. Открытые пруды глубиной от 1 до 1,5 м заливают неочищенными стоками. В процессе фотосинтеза водоросли выделяют кислород и обеспечивают таким образом жизнедеятельность других аэробных микроорганизмов, растущих в сточных водах. Время от времени водоросли собирают и перерабатывают на корм скоту.

Научные исследования

Одноклеточным водорослям присущи все характерные признаки типичных растений, поэтому они являются идеальным материалом для научных исследований, так как, во-первых, их можно выращивать в большом количестве в строго определенных условиях и, во-вторых, для этого не требуется очень много места. Примером таких водорослей может служить Chlorella, которой по праву принадлежит почетное место в исследованиях фотосинтеза (разд. 9.4.3). Водоросли используются и при изучении поглощения ионов. Они принесли большую пользу и в новаторских исследованиях строения клеточной стенки и жгутиков.

Вред, наносимый водорослями

В определенных условиях водоросли "цветут", т. е. в огромных количествах скапливаются в воде. "Цветение" наблюдается при достаточно теплой погоде, когда в воде много питательных веществ. Такая ситуация очень часто искусственно создается человеком, когда в воду сбрасывают промышленные стоки или же когда в реки и озера попадают удобрения с полей. В результате начинается взрывоподобное размножение первичных продуцентов (водорослей), и они в нарушение всех законов природы начинают отмирать раньше, чем их успеют съесть. При последующем разложении остатков происходит столь же интенсивное размножение аэробных бактерий и вода полностью лишается кислорода. Все это происходит очень быстро, и из-за нехватки кислорода начинают гибнуть рыбы и другие животные и растения. Увеличение концентрации питательных веществ в воде, которое запускает весь этот процесс, называется эвтрофизацией водоема, и если оно происходит быстро, то можно считать, что это еще одна из форм загрязнения окружающей среды.

Токсины, образующиеся при "цветении" воды, в особенности при размножении сине-зеленых водорослей, увеличивают гибель животных. Подобные взрывы численности водорослей представляют собой серьезную проблему для рыбоводческих хозяйств, особенно там, где интенсивный вывоз удобрений на поля еще в большей степени усиливает эвтрофизацию. Сходные осложнения возникают и при "цветении" воды в океане. Кроме того, токсины, накапливаясь в теле моллюсков и ракообразных, питающихся водорослями, и затем попадая в организм человека, вызывают у него различные отравления и паралич.

С водорослями связаны и многие сложности при хранении питьевой воды в запасных резервуарах, когда она загрязняется продуктами жизнедеятельности водорослей или когда водоросли начинают расти на песчаных фильтрах, полностью забивая их.

3.4. Те трудности, о которых мы только что говорили, чаще возникают в водохранилищах, расположенных в низинах. Объясните, почему это так и должно быть.

3.5. В отличие от многих грибов и бактерий водоросли не вызывают никаких заболеваний. С чем это связано?

Учебное пособие написано в соответствии с требованиями ФГОС ВПО по направлению «Педагогическое образование» и дополняет знания студентов по теоретической части курса «Ботаника» (систематика растений и грибов). Материал пособия может быть использован студентами как для самостоятельной работы, так и для работы в аудитории под руководством преподавателя.

* * *

Приведённый ознакомительный фрагмент книги Ботаника. Систематика растений: учебное пособие (С. К. Пятунина, 2013) предоставлен нашим книжным партнёром - компанией ЛитРес .

Водоросли (Algae)

Многочисленная и разнообразная группа низших талломных растений, первичной средой обитания которых является вода. Водоросли объединяют несколько самостоятельных и, по всей вероятности, независимо эволюционировавших отделов. Представители отделов отличаются по набору пигментов, деталям тонкой структуры хроматофоров, по продуктам фотосинтеза, накапливающимся в клетке (запасным веществам), и по строению жгутикового аппарата. Низшие растения – одноклеточные, колониальные или ценобиальные и многоклеточные организмы. Ценобиями называют колонии, в которых число клеток определяется на ранних стадиях развития и не меняется до следующей стадии репродукции (воспроизведения). Рост ценобия происходит за счет увеличения размеров клеток, а не их числа. Различают следующие типы морфологической организации таллома:

1. Монадный – клетки, активно двигающиеся с помощь жгутиков.

2. Коккоидный – неподвижные клетки.

3. Ризоподиальный (амебоидный) – вегетативные клетки не покрыты оболочками и могут развивать цитоплазматические отростки – ризоподии.

4. Пальмеллоидный, или капсальный, тип организации представлен неподвижными клетками, погруженными в общую слизь.

5. Нитчатый – клетки, соединены в нити, простые или разветвленные.

6. Гетеротрихальный, или разнонитчатый, – усложненный вариант нитчатого строения, для которого характерны две системы нитей: стелющиеся по субстрату и отходящие от них вертикальные нити.

7. Пластинчатый – талломы в виде пластинок.

8. Сифональный – талломы, часто крупных размеров, формально представляют собой одну клетку обычно с большим числом ядер.

9. Сифонокладальная организация представлена многоядерными клетками, соединенными в нитчатые или иной формы многоклеточные талломы. На первых этапах образования таллома имеет сифональный тип строения.


Водоросли могут размножаться тремя способами: вегетативным, бесполым и половым. Вегетативное размножение заключается в отделении от целого растения части вегетативного таллома, дающей начало новому таллому. Бесполое размножение осуществляется при помощи специализированных клеток – спор, образующихся в спорангиях. Споры бывают подвижными (зооспоры) или неподвижными (апланоспоры). По форме они могут быть идентичны родительским талломам (автоспоры одноклеточных водорослей) или резко от них отличаться (одноклеточные споры многоклеточных водорослей).

Половое воспроизведение у водорослей чрезвычайно разнообразно. Наиболее простые формы полового процесса – слияние морфологически неразличимых вегетативных особей – хологамия и конъюгация. У значительной части водорослей происходит образование специализированных половых клеток – гамет. Различают следующее поведение гемет:

1. Изогамию - слияние одинаковых по форме и размерам гамет.

2. Гетерогамию – оба типа копулирующих гамет имеют жгутики, но женская крупнее и менее подвижна, чем мужская.

3. Оогамию - слияние неподвижной женской яйцеклетки и подвижной мужской клетки. Копулируют гаметы, возникшие на одной особи (гомоталлизм) или на разных особях (гетероталлизм). Гетероталлизм наблюдается при любой форме полового процесса. У изогамных форм гаметы при морфологическом тождестве оказываются физиологически различными и обозначаются условными знаками «+» и «-». Мужские гаметы, имеющие жгутики, называют сперматозоидами, не имеющие жгутиков, но способные передвигаться при помощи амебоидных движений называют спермациями. В результате полового процесса образуется диплоидная клетка – зигота.

Жизненный цикл, или цикл воспроизведения водорослей, включает вегетативный рост, бесполые спороношения, половой процесс, покоящиеся стадии. Соотношение диплоидной и гаплоидной фаз в жизненном цикле водорослей неодинаково. В одних случаях прорастание зиготы сопровождается редукционным делением (мейозом) зиготы (зиготическая редукция), при этом развивающиеся растения оказываются гаплоидными. У многих зеленых водорослей зигота – единственная диплоидная стадия в цикле развития, вся вегетативная фаза проходит у них у гаплоидном состоянии. Такой жизненный цикл называют моногаплобионтным. У части других водорослей, наоборот, вся вегетативная фаза диплоидна, гаплоидная фаза представлена лишь гаметами, перед образованием которых и происходит редукционное деление ядра (гаметическая редукция), жизненный цикл – монодиплобионтный. У третьих редукционное деление ядра предшествует образованию спор, развивающихся на диплоидных талломах (спорическая редукция). Они вырастают в гаплоидные растения размножающиеся половым путем (гаметофиты). После слияния гамет зигота развивается в диплоидное растение, несущее органы бесполого размножения (спорофиты ). Таким образом, у этих водорослей имеет место чередование поколений (генераций): диплоидного и гаплоидного. Жизненный цикл – гаплоидно-диплоидный. Оба поколения могут быть одинаковы морфологически (изоморфная смена поколений) или же резко отличаться по внешнему виду (гетероморфная смена поколений).

На практических занятиях изучают отделы: зеленые (Chlorophyta), диатомовые (Bacillariophyta или Diatomeae), бурые (Phaeophyta), красные (Rhodophyta) водоросли.

Отдел Зеленые водоросли (Chlorophyta)

Отдел Зеленые водоросли – самый большой по количеству видов (до 20 000 видов) и морфологически разнообразный отдел водорослей. Здесь имеются и микроскопические мелкие, одноклеточные формы (монадные и коккоидные) и достаточно сложно устроенные нитчатые, гетеротрихальные, сифональные, сифонокладальные и пластинчатые, достигающие нескольких десятков сантиметров. Обширна и область распространения зеленых водорослей (они встречаются по всему земному шару) и широка их экологическая амплитуда. Они обитают в пресных и морских водоемах, некоторые живут вне воды. Но при всем многообразии у зеленых водорослей есть ряд общих признаков:

1) пигментный состав: хлорофилл а и в, каротиноиды и ксантофиллы;

2) основной запасной продукт углеводной природы – крахмал, откладывается в хроматофоре вокруг пиреноида;

3) светочувствительный глазок – стигма, находится в строме хроматофора;

4) тилакоиды, несущие пигменты имеют тенденцию к образованию стопок;

5) жгутики изоморфные (одинаковые по строению) и изоконтые (равные по длине).

Класс Собственно зеленые, или Равножгутиковые, водоросли (Chlorophyceae, Isocantae)

Для представителей этого класса характерно бесполое размножение при помощи неподвижных апланоспор или подвижных зооспор с двумя – четырьмя, реже многими изоконтными и изоморфными жгутиками. Половые процессы – хологамия или копуляция гамет – изогамия, гетерогамия, оогамия. Зигота обычно проходит состояние покоя и прорастает при наступлении благоприятных условий, причем ее диплоидное ядро сразу делиться редукционно. В соответствии со ступенями морфологической дифференцировки таллома класс делится на порядки.

Порядок Вольвоксовые (Volvacales)

Порядок включает одноклеточные, колониальные и ценобиальные водоросли снабженные жгутиками, то есть монадной организации.

Род Хламидомонада (Chlamydomonas)

Хламидомонада – обширный род, объединяющий около 500 видов, широко распространен в природе. Его виды можно встретить в мелких, хорошо прогреваемых водоемах, лужах, канавах. При массовом развитии вызывает цветение воды, особенно в загрязненных органическими веществами водоемах. Таллом хламидомонады одноклеточный, монадной организации, то есть, находясь в активном состоянии, хламидомонады быстро передвигаются с помощью двух равных жгутиков, прикрепленных к переднему концу тела. Фаза активного движения сменяется состоянием покоя. Это так называемая пальмеллевидная стадия, когда клетки теряют жгутики, их оболочки сильно ослизняются и образуют агрегации клеток хламидомонад, погруженных в общую слизь. В таком виде клетки хламидомонад размножаются делением. Попадая в благоприятные условия существования, хламидомонады снова вырабатывают жгутики и переходят к активному движению.

Хламидомонада имеет целлюлозно-пектиновую клеточную оболочку, чашевидный хроматофор с одним или несколькими пиреноидами, расположенными в нижней части, и светочувствительным глазком (стигмой) – в верхней части. Ядро находится в углублении хроматофора, имеется пара пульсирующих вакуолей. Бесполое размножение зооспорами происходит в благоприятных условиях обитания. Каждая хламидомонада потенциально может размножаться как вегетативно, так и бесполым путем, а также участвовать в половом процессе. При бесполом размножении протопласт делится на 4 или 8 частей, образуются зооспоры. Половой процесс у большинства видов изогамный. Гаметы образуются так же, как и зооспоры, но в большем количестве (32 или 64). Зигота хорошо приспособлена к перенесению неблагоприятных условий. Ее прорастание сопровождается редукционным делением. Цикл развития хламидомонад – моногаплобионтный.

Род Вольвокс (Volvox)

Род Вольвокс – колониальные или ценобиальные водоросли. Небольшой род вольвокс обитает в чистых стоячих водоемах, прудах и небольших озерах. Это наиболее высокоорганизованный представитель порядка вольвоксовых. Он представляет собой крупный, достигающий 2–3 мм в диаметре шар, одетый тонким слоем слизи (инволюкрумом), под которым по периферии шара в один слой располагаются двужгутиковые клетки. Число их колеблется от 500 до 60 000. Внутренняя полость шара занята жидкой слизью. Клетки колонии по строению подобны клеткам хламидомонады. Но оболочка каждой клетки сильно ослизнена, поэтому протопласты соседних клеток удалены друг от друга и цитоплазматические отростки пронизывают толщу ослизненной оболочки. В местах соприкосновения формируются плазмодесмы.

В бесполом размножении участвуют 8-10 клеток, расположенных в задней, относительно направления движения, части сферы. Это гонидии. Среди других эти клетки выделяются более крупными размерами. При их делении сначала формируется плоская 16-клеточная пластинка (гоническая стадия), дальнейшее деление приводит к формированию незамкнутой сферы с маленьким незамкнутым отверстием, направленным к наружной поверхности родительской колонии. Формирующиеся клетки нового организма обращены своими жгутиками внутрь сферы. Нормальная ориентировка клеток (с передними концами, направленными кнаружи), достигается путем полного выворачивания наизнанку незамкнутой сферы, только после этого ее отверстие замыкается. Репродуктивные клетки дифференцируется очень рано, так что можно наблюдать внутри материнского организма не только дочерние, но внучатые колонии. Освобождаются молодые колонии после разрушения материнской.

Клетки, служащие для полового размножения, – оогонии и антеридии. Оогонии темно-зеленого цвета значительно крупнее других клеток и лишены жгутиков. В оогонии развивается одна крупная яйцеклетка. Антеридии формируют пакеты сперматозоидов. Половой процесс у вольвокса оогамный. Встречаются обоеполые и раздельнополые виды, а так же гомо-и гетероталличные клоны. Формируется покоящаяся зигота, которая прорастает молодой дочерней колонией после редукционного деления диплоидных ядер. Цикл развития моногаплобионтный.

Объекты: р. хламидомонада, р. вольвокс.

Ход работы

1. Рассмотрите хламидомонаду сначала на малом увеличении (м. увел.), затем более детально при большом увеличении (б. увел.) изучите неподвижные особи, пронаблюдайте движение хламидомонады.

2. Сделайте два рисунка:

а) внешний вид хламидомонады. Обозначьте оболочку, хроматофор;

б) схему строения клетки хламидомонады, используя таблицу. Обозначьте оболочку, цитоплазму, ядро, хроматофор, глазок (стигму), пиреноид, жгутики, пульсирующие вакуоли.

3. Рассмотрите при м. увел. и зарисуйте с препарата сферические ценобии вольвокса с дочерними колониями.

4. Сделайте схематичный рисунок, используя таблицу, отразив особенности строения ценобия. Обозначьте протопласты, цитоплазматические отростки, плазмодесмы, жгутики, оогонии, антеридии.

Порядок Хлорококковые (Chlorococcales)

Порядок включает одноклеточные и ценобиальные формы с коккоидной организацией клетки.

Род Хлорококк (Chlorococcum)

Род Хлорококк содержит 38 видов и встречается в разнообразных местообитаниях: в воде, как в планктоне, так и в бентосе; в почве, а также на коре деревьев, на старых деревянных постройках. Хлорококк входит в состав лишайников.

Это одноклеточная коккоидная водоросль, неподвижная в вегетативном состоянии. Клетки имеют чашевидный хроматофор с пиреноидом, но отсутствуют жгутики, глазки и пульсирующие вакуоли. Ядро располагается в выемке хроматофора. У старых особей можно наблюдать несколько ядер, клетки покрыты толстой целлюлозной оболочкой.

Размножается хлорококк бесполым путем с помощью двужгутиковых зооспор удлиненной формы. Протопласт материнской клетки делится и формируется от 8 до 32 зооспор, которые освобождаются после разрушения стенки материнской клетки. Период активного движения непродолжительный; поплавав некоторое время, зооспоры теряют жгутики, одеваются оболочкой, растут, достигая размеров, характерных для того или иного вида. Половой процесс изогамный. Цикл развития моногаплобионтный.

Род Гидродицион (Hydrodiction)

Гидродицион небольшой, но широко распространенный род. Встречается в заводях рек, прудов и других стоячих водоемах, обогащенных азотом. Это макроскопическая ценобиальная водоросль, сложенная из большого количества (до 20 000) клеток. Старые экземпляры достигают метровой длины, а клетки у них до полутора сантиметров.

Гидродикцион имеет вид замкнутой сети, состоящей из 5-6-угольных ячеек, образованных гигантскими клетками, соединенными своими концами. В клетках взрослых сеточек – одна гигантская вакуоль, цитоплазма располагается постенно и содержит сетчатый хроматофор с многочисленными пиреноидами и большое количество мелких ядер. Оболочка целлюлозная. Каждая клетка выполняет все функции организма (питание и размножение).

Размножение водяной сеточки бесполое и половое. К бесполому размножению приступают клетки, достигшие уже достаточно больших размеров (0,2 мм). В протопласте формируется такое количество зооспор, которое характерно для данного вида сеточки. Зооспоры не покидают материнскую клетку, а некоторое время перемещаются внутри клетки.

Затем сбрасывают жгутики и складываются в молодую сеточку, склеиваясь друг с другом теми местами, где проходят тяжи микротрубочек. Клетки молодой сеточки одноядерные, с пластинчатым хроматофором, несущим один пиреноид. Некоторое время молодая сеточка живет под оболочкой материнской клетки, но ее размер быстро увеличивается, клетки вытягиваются. В конце концов, оболочка материнской клетки разрушается, и сеточка приступает к самостоятельной жизни.

Половое размножение изогамное, гамет формируется больше, чем зооспор, и они значительно меньше. Зигота окрашена гематохромом в кирпично-красный цвет. После периода покоя зигота делится редукционно и прорастает четырьмя крупными зооспорами. Они малоподвижны, скоро теряют жгутики и снова покрываются толстой, но уже скульптурной оболочкой, превращаясь в так называемый полиэдр. Полиэдры, оболочки которых несут отростки, а содержимое богато жировыми включениями, по-видимому, имеют значение для распространения водорослей. Полиэдры могут благополучно переносить высыхание, и являются, таким образом, второй покоящейся стадией в цикле развития водяной сеточки.

Род Хлорелла (Chlorella)

Хлорелла – очень широко распространенная водоросль. В природе она встречается в планктоне и бентосе различных водоемов, на почве, участвует в образовании тела лишайников, а также живет в симбиозе с мелкими животными, образуя так называемые зоохлореллы. Это одна из культивируемых водорослей. Благодаря высокой скорости размножения, хлорелла дает большой выход биомассы.

Хлорелла – это одноклеточная коккоидная водоросль шаровидной формы. В протопласте находится колоколообразный, с большим углублением, хроматофор. Во впадине хроматофора можно обнаружить ядро. Размножается хлорелла только бесполым путем – автоспорами. Половой процесс неизвестен. Цикл развития бесполый, моногаплобионтный.

Объекты: р. хлорококк, р. водяная сеточка, р. хлорелла.

Ход работы

1. Рассмотрите при б. увел. и зарисуйте хлорококк. Обозначьте толстую оболочку (приспособление к аэрофильному образу жизни), чашевидный хроматофор.

2. Рассмотрите при м. увел. фрагмент ценобия водяной сеточки и зарисуйте, показав 5-6-угольные клетки, образующие ценобий. Обозначьте клетку ценобия, хроматофоры.

3. Рассмотрите при б. увел. и зарисуйте клетку ценобия с молодым ценобием внутри клетки. Обозначьте оболочку материнской клетки, молодой ценобий.

4. Зарисуйте хлореллу при б. увел. Обозначить толстую оболочку, хроматофор.

Порядок Улотриксовые (Ulothrichales)

Порядок объединяет водоросли, имеющие таллом в виде неразветвленной нити, сложенной из одноядерных клеток, реже таллом пластинчатый или трубчатый.

Род Улотрикс (Ulothrix)

Улотрикс – достаточно крупный род, встречается в пресных и чуть солоноватых водоемах, предпочитает чистую проточную воду. В прибрежной зоне рек и ручьев, особенно на территориях с подходящим климатом можно встретить Ulothrix zonata. Улотрикс бентосная, прикрепленная водоросль, образует скопления на прибрежных камнях.

Улотрикс – это многоклеточная нитчатая неветвистая водоросль. Все клетки, за исключением базальной, служащей для прикрепления, однотипны. Они покрыты тонкой, иногда ослизненной, целлюлозной оболочкой. Хроматофор постенный в виде замкнутого или незамкнутого пояска с большим количеством пиреноидов. Ядро в клетках одно. Число клеток в нитях неопределено, так как в верхних частях клетки постоянно делятся в одной плоскости. Размножается улотрикс вегетативно (фрагментацией нити), бесполым и половым путем. Бесполое размножение осуществляется зооспорами, снабженными четырьмя изоконтными и изоморфными жгутиками. Зооспоры, прорастая, формируют нити улотрикса. Зооспорангием потенциально может стать любая, кроме базальной клетка нити. Улотрикс образует двужгутиковые изогаметы. После слияния формируется планозигота (подвижная клетка с четырьмя жгутиками), которая затем теряет жгутики и дифференцируется в одноклеточный своеобразный спорофит – расширенное покрытое толстой оболочкой тело на тонкой ножке. В таком покоящемся состоянии зигота-спорофит находится некоторое время, и затем после редукционного деления в ней формируются зооспоры числом 4-16. Такой жизненный цикл характерен для Ulothrix zonata. У некоторых видов зигота прорастает в диплоидную нить. Таким образом, цикл развития у Ulothrix zonata – c гетероморфной сменой многоклеточного нитчатого гаплоидного спорогаметофита и одноклеточного диплоидного спорофита.

Род Ульва (Ulva)

Род Ульва известен под названием «Морской салат», широко распространен, но предпочитает мелкие воды. Ульва – морская водоросль, но хорошо переносит опреснение. Она обитает в устьях рек, мелководных лиманах, морских болотах; хорошо переносит, а отчасти и предпочитает воды со значительным органическим загрязнением. Местное население использует ее в пищу, но промыслового значения ульва не имеет.

Таллом ульвы – многоклеточный, пластинчатый, состоит из двух слоев клеток, края пластинки, гофрированные вследствие более интенсивных клеточных делений в краевых, по сравнению со срединными, зонах. В основании пластинка сужается в короткий черешок с подошвой, которой она и прикрепляется к твердому субстрату. Дифференциация клеток в талломе ульвы невелика. Специальных репродуктивных органов нет. Потенциально каждая клетка может стать спорангием у диплоидного поколения либо гаметангием у гаплоидного. Некоторые клетки имеют трубчатые выросты, спускающиеся вдоль центральной части таллома.

Бесполое размножение осуществляется четырехжгутиковыми зооспорами, образующимися на диплоидных растениях после редукционного деления. Прорастают зооспоры в однорядную неветвящуюся нить, но еще до начала деления у потерявшей жгутики и осевшей на грунт зооспоры обнаруживается поляризация. Верхний конец – более толстый, а нижний – тонкий и вытянутый, из него впоследствии формируются структуры прикрепления. Половой процесс изо– или гетерогамый, гаметы двужгутиковые. Цикл развития гаплодиплобионтный с изоморфной сменой поколений.

Объекты: р. улотрикс, р. ульва.

Ход работы

1. Рассмотрите при б. увел. и зарисуйте участок нити улотрикса, обратить внимание на строение хромотофора. Обозначьте клетки таллома: оболочку клетки, хроматофор, пиреноиды.

2. Зарисуйте внешний вид таллома ульвы, используя влажный препарат.

Порядок Хетофоровые (Chaetophorales)

Порядок включает многоклеточные нитчатые формы гетеротрихального типа с дифференцировкой таллома на горизонтальную, распростертую по субстрату, и вертикальную систему нитей.

Род Драпарнальдия (Draparnaldia)

Виды этого рода требовательны к чистоте и аэрации водоемов и предпочитают быстротекущие реки и ручьи. Они в массе произрастают на довольно значительных глубинах (10 м), образуя там целые заросли. Драпарнальдия бентосная – прикрепленная водоросль нитчатого гетеротрихального строения. У нее имеются длинные (неограниченного роста) слабоветвящиеся нити с поясковидным хроматофором с изрезанными краями. Хроматофор у таких веток небольшой относительно общего объема клетки, поэтому клетки магистральных нитей бледные. От этих нитей отходят мутовками пучки коротких сильноразветвленных веточек ограниченного роста, это ассимиляторы. Хроматофоры в них постенные, большие; клетки зеленого цвета. Каждая короткая нить заканчивается бесцветным длинным волоском. Органы размножения размещаются среди ассимиляторов. Бесполое размножение при помощи четырехжгутиковых зооспор. Половой процесс – изогамия или гетерогамия. Цикл развития моногаплобионтный.

Род Трентеполия (Trentepohlia)

Трентеполия – аэрофильная наземная водоросль, хорошо приспособленная к недостатку влаги. Она поселяется на коре деревьев, камнях, деревянных строениях. Особенно много видов этого рода обнаружено во влажных тропических и субтропических областях, где трентеполия нередко ведет эпифитный образ жизни. Трентеполию легко распознать среди других наземных водорослей за счет гематохрома – маслорастворимого каротиноида, придающего ей кирпичнокрасный или желтый цвет. Таллом трентеполии нитчатый гетеротрихальный. Стелющиеся по субстрату нити состоят из округлых или овальных клеток, покрытых толстой слоистой оболочкой. Они связаны друг с другом порами с плазмодесмами, но тем не менее стелющиеся нити легко распадаются на короткие фрагменты или отдельные клетки. Эти фрагменты и клетки в сухом состоянии распыляются и переносятся ветром. Таким образом, трентеполия имеет достаточно эффективный механизм вегетативного размножения, что особенно важно в условиях недостатка воды. В клетках находится нескольких дисковидных или ленточных хроматофоров, лишенных пиреноидов, и большое количество ядер, особенно у старых клеток. Кроме горизонтальной, имеется система вертикальных нитей, состоящая из более удлиненных клеток. Как горизонтальные, так и вертикальные нити обильно ветвятся за счет деления верхушечных клеток, на последних образуются слоистые колпачки.

Бесполое размножение происходит двух– или четырехжгутиковыми зооспорами, образующимися в специальных верхушечных клетках, – спорангиях, сидящих на трубчатых клетках – ножках. Спорангии отделяются и целиком переносятся воздушными течениями. Зооспоры образуются только в том случае, если спорангий окажется в воде. Тогда многоядерное содержимое очень быстро, за несколько минут, распадается на одноядерные участки, и вырабатываются зооспоры. Гаметангии также отличаются морфологически от вегетативных клеток, но располагаются преимущественно на стелющихся нитях. В отличие от спорангиев, шаровидные гаметангии не имеют ножек. Гаметангии также переносятся воздушными течениями. Попадая в воду, они прорастают двужгутиковыми изогаметами. Однако копуляция происходит редко, и гаметы развиваются партеногенетически (без оплодотворения). В случае формирования зигот они после периода покоя прорастают зооспорами. Цикл развития моногаплобионтный.

Объекты: р. драпарнальдия, р. трентеполия.

Ход работы

1. Рассмотрите при м. увел. и зарисуйте участок гетеротрихального нитчатого талома драпарнальдии, отметьте особенности строения «стволовых» нитей и ассимиляторов, покажите отличие строения хроматофоров в клетках осевой нити и в клетках боковых веточек. Обозначьте осевую нить, нити-ассимиляторы.

2. Рассмотрите при б. увел. и зарисуйте клетку осевой нити и клетку нити-ассимилятора. Обозначьте оболочку клетки, хроматофор.

3. Рассмотреть при б. увел. и зарисовать участок нити трентеполии. Обозначьте слоистую оболочку, запасные вещества (в виде капель масла, окрашенных гематохромом), дисковидные хроматофоры.

Порядок Кладофоровые (Cladophorales)

Порядок включает водоросли неклеточного строения, нитчатые ветвистые, поделенные поперечными перегородками на неравноценные сегменты, каждый из которых содержит много ядер. Поперечные перегородки возникают независимо от деления ядер.

Род Кладофора (Cladophora)

Кладофора – очень большой и широко распространенный род, в основном морских, и отчасти пресноводных водорослей. Описано около 150 видов. Встречается на мелководьях в полосе прибоя, на скалах, вдающихся в море, в лагунах, прудах, озерах. Молодые растения прикреплены к грунту или к различным подводным предметам, но позднее отрываются и плавают, образуя большие скопления или жесткую тину; а также крупные (10–15 см в диаметре) шаровидные скопления. Таллом сильноветвистый, сифонокладальной структуры. Сегменты, образуемые поперечными перегородками, не являются клетками в настоящем смысле. Формирование поперечных перегородок качественно отличается от цитокинеза и не связано с делением ядер. Сегменты неодинаковы по размеру и содержат разное количество ядер. Сетчатый хроматофор также формируется путем соприкосновения и слияния свободных вначале хлоропластов. Внешняя оболочка толстая, целлюлозная, никогда не ослизняется, поэтому тина кладофоры жесткая и не скользкая.

Размножение бесполое и половое. Зооспорангием или гаметангием может стать любой сегмент водоросли. Четырехжгутиковые зооспоры выходят из спорангия через пору и прорастают сначала в пузыревидное тело, лишенное перегородок (сифональная стадия), позже возникают поперечные перегородки и происходит ветвление нитевидных структур. Половой процесс изогамный. Зигота прорастает в диплоидное растение. У большинства видов кладофоры, обитающих в морях, изоморфная смена поколений, в таком случае зооспоры образуются после редукционного деления (мейозоо-споры), но у пресноводных видов отмечен монодиплобионтный цикл, когда редукционное деление предшествует образованию гамет.

Объекты: р. кладофора.

Ход работы

Рассмотрите при б. увел. и зарисуйте участок ветвящегося таллома кладофоры с зооспорангиями. Обозначьте клетки таллома, одноклеточные зооспорангии.

Класс Конъюгаты (Conjugatophyceae)

У представителей этого класса особый тип полового процесса – конъюгация, жгутиковых стадий нет, бесполого размножения спорами нет.

Порядок Зигнемовые (Zygnematales)

Порядок Зигнемовые – нитчатые неветвистые многоклеточные водоросли, оболочка их ослизняющаяся, и поэтому они скользкие на ощупь. Зигота прорастает одним проростком, три остальные ядра, образовавшихся в процессе редукционного деления, отмирают.

Род Спирогира (Spirogyra)

Род Спирогира – один из самых крупных и широко распространенных по всему земному шару: он найден даже в Антарктиде. Редкая канава, лужа, пруд или озеро лишены слизистой на ощупь, плавающей на поверхности тины. Таллом спирогиры – нитчатый, неветвистый, все клетки в нити равноценны и однотипны. В клетке имеется один или несколько постенных, спиральных, лентовидных хроматофоров, с большим количеством пиреноидов, расположенных вдоль продольной оси. Края хроматофора неровные. В клетке имеется одна или несколько вакуолей с клеточным соком. В первом случае цитоплазма занимает постенное положение. При наличии нескольких вакуолей, кроме постенного слоя цитоплазмы, имеются цитоплазматические тяжи и центральный цитоплазматический мешочек, в котором находится крупное, хорошо видимое без окраски, ядро. Внутренний слой клеточной оболочки целлюлозный, наружный – пектиновый, обеспечивает ослизнение и образование студенистого покрова, придающего нитям шелковистость. У спирогир, обитающих в водоемах с сильным течением, вырабатываются различного рода ризоиды, удерживающие водоросль на месте. Спирогира, как и другие коньюгаты, не имеет в цикле развития жгутиковой стадии и не образует спор. Она размножается либо фрагментацией нитей вегетативно, либо половым путем. При конъюгации формируются многочисленные зиготы, которые после периода покоя прорастают одной нитью. Из четырех гаплоидных ядер, образующихся в процессе редукционного деления, три мелких отмирают, и остается одно крупное жизнеспособное ядро. Все питательные вещества, накопленные в зиготе, идут на формирования одного проростка. Зиготы хорошо приспособлены к перенесению неблагоприятных условий. Они покрыты толстой трехслойной скульптурированной оболочкой. Структура оболочки зигот является важным таксономическим признаком.

Объекты: р. спирогира.

Ход работы

Рассмотрите при м. увел. и зарисуйте внешний вид многоклеточного таллома спирогиры. Обозначьте клетку таллома.

1. Рассмотрите при б. увел. и зарисуйте клетку спирогиры. Обозначьте оболочку клетки, хроматофор, пиреноиды,

ядро, тяжи цитоплазмы.

2. Пронаблюдайте и зарисуйте разные стадии конъюгационного процесса.

Обозначьте стадии: образование конъюгационных отростков, сжатие и перетекание протопласта, образование зиготы.

Порядок Десмидиевые (Desmidiales)

Порядок Десмидиевые – одноклеточные организмы или нитевидные колонии. Клетка состоит из двух равных половинок – полуклеток. При вегетативном размножении каждая полуклетка достраивает вторую половинку.

Род Клостериум (Closterium)

Клостериум – это пресноводная бентосная водоросль, требующая хорошего освещения, она обитает в небольших водоемах, прудах, тихих заводях рек и в обрастаниях подводных предметов. При массовом развитии формируют слизистые скопления. Клостериум любит чистую воду, но переносит органические загрязнения, а порой встречается и в сточных водах. Это одноклеточная форма, ее серповидное тело состоит из двух симметричных половин – полуклеток. Ядро расположено в центре, в цитоплазматическом мешочке. Внешней перетяжки, свойственной другим десмидиевым водорослям, клостериум не имеет, но внутренняя структура отвечает особенностям представителей этого порядка. Клостериум имеет два одинаковых осевых хроматофора, своеобразного строения. От центрального стержня радиально отходят несколько пластинок так, что на поперечном срезе хроматофор имеет вид многолучевой звезды. Крупные пиреноиды расположены вдоль стержня или разбросаны беспорядочно у основания. Основание хроматофора, обращенное к центру клетки, – широкое, по концам клетки хроматофор конически сужается. На полюсах клетки находятся две небольшие вакуоли с клеточным соком, в который погружены маленькие кристаллики гипса, находящиеся в постоянном движении (броуновское движение), и особые слизистые тельца. Трехслойная оболочка клостериума пронизана многочисленными коническими порами. Особенно крупные поры располагаются на концах клеток. Эти поры выделяют слизь, благодаря которой водоросль медленно передвигается. В то время как один конец тела прикрепляется к субстрату, другой совершает колебательные движения. Затем водоросль прикрепляется к субстрату другим концом. Так кувыркаясь, клостериум передвигается по направлению к источнику света.

Размножение клостериума вегетативное. Клетки делятся поперечно. Каждая дочерняя клетка получает половину материнской с одним хроматофором. Вторая половинка, то есть полуклетка, достраивается заново. Сначала молодая полуклетка не имеет хлоропласта, и лишь затем хроматофор старой полуклетки делится, и одна его половина переходит в новую полуклетку. Таким образом, каждая особь клостериума состоит из двух разновозрастных половинок: одной более старой и другой более молодой. Половой процесс – конъюгация двух особей, погруженных в общую слизь. Зигота покрыта толстой слоистой оболочкой и хорошо приспособлена к перенесению неблагоприятных условий. Всю зиму зиготы находятся в состоянии покоя, и долгое время ядра остаются не слившимися. Из зиготы формируется два молодых клостериума, получающих по два гаплоидных мейотических ядра. Одно, маленькое, вскоре дегенерирует. Второе – становится ядром новой особи. Цикл развития моногаплобионтный.

Объекты: р. клостериум.

Ход работы

1. Рассмотрите клостериум при м. увел. и пронаблюдайте его движение.

2. Рассмотрите клетку клостериума при б. увел. и зарисуйте ее. Обозначьте оболочку клетки, ядро, хроматофоры, пиреноиды, терминальные вакуоли с кристаллами гипса.

Вопросы и задания

1. Перечислите основные типы морфологической организации у зеленых водорослей. Охарактеризуйте каждый из типов. Приведите примеры.

2. Какие признаки характерны для представителей отдела зеленых водорослей?

3. На какие классы подразделяют отдел зеленые водоросли? В чем отличие представителей каждого класса?

4. Что такое колонии и ценобии у зеленых водорослей? Приведите примеры колониальных и ценобиальных зеленых водорослей. В чем различия колониальных и многоклеточных организмов?

5. Как происходит вегетативное размножение у зеленых водорослей? Приведите примеры.

6. Как происходит бесполое размножение у зеленых водорослей? Приведите примеры.

7. Какие половые процессы характерны для зеленых водорослей? Приведите примеры.

8. Зарисуйте схематично жизненный цикл хламидомонды, улотрикса, ульвы, спирогиры. Подпишите на схеме какое поколение является спорофитом, а какое гаметофитом, набор хромосом (гаплоидный или диплоидный) для каждого поколения и клеток служащих для размножения, тип редукционного деления и полового процесса. Укажите характерный для данных водорослей тип жизненного цикла.

9. Заполните таблицу:


Сравнительная характеристика классов и порядков

10. Охарактеризуйте роль зеленых водорослей в жизни водоемов. Приведите примеры зеленых водорослей, ведущих наземное существование.

Отдел Диатомовые водоросли (Bacillariophyta, Diatomeae)

Обширный отдел одноклеточных и колониальных организмов, объединяющих более 10 000 видов. Клетки диатомовых покрыты кремнеземовым панцирем, состоящим из двух половинок, надевающихся друг на друга, как крышка на коробку. Большая половинка – эпитека и меньшая – гипотека. Каждая половинка состоит из створки (донышка) и спаянного с ней пояскового кольца (пояска). Причем поясок эпитеки накладывается на поясок гипотеки. Под панцирем находится пектиновая оболочка. Диатомовые относятся к группе буроокрашенных водорослей, для которых характерно наличие хлорофиллов а и с, маскирующихся желтым пигментом фукоксантином. Запасной продукт углеводной природы – хризоламинарин. Монадные клетки – сперматозоиды с одним перистым жгутиком. Размножаются диатомовые вегетативно, путем продольного деления клеток с достраиванием одной створки – гипотеки. Половые процессы – конъюгация и оогамия. После полового процесса формируется зигота, обладающая способностью к росту (ауксоспора). Диатомовые водоросли живут в диплоидном состоянии и только их гаметы гаплоидны.

Класс Центрические (Centrophyceae)

Класс Центрические объединяет водоросли с радиально симметричным панцирем и отсутствием шовно-узелкового аппарата. Все центрические водоросли неподвижны. Половой процесс – оогамия.

Род Мелозира (Melosira)

Мелозира – это нитчатая колониальная водоросль, состоящая из однотипных цилиндрических клеток, соединенных между собой соприкосновением мелких шипиков, расположенных на округлых поверхностях створок. Панцирь мелозиры имеет широкие пояски, поэтому чаще всего водоросль рассматривается со своей боковой поверхности. В клетках имеются несколько лопастных хроматофоров, расположенных постенно, центр клетки занят большой вакуолью с клеточным соком.

Мелозира не имеет шовно-узловой структуры и поэтому неподвижна.

Размножается делением и половым путем. Половой процесс – оогамия. В одних клетках после редукционного деления образуется одна яйцеклетка, в других – четыре сперматозоида с одним жгутиком. Зигота покрыта тонкой, хорошо растяжимой пектиновой оболочкой. Интенсивно растущие зиготы называются ауксоспорами. Так как в половом процессе участвуют измельченные после многократных делений клетки, то ауксоспора восстанавливает их исходный объем. Достигнув определенных размеров, ауксоспора вырабатывает собственный панцирь. Цикл развития мелозиры монодиплобионтный.

Объекты: р. мелозира.

Ход работы

1. Рассмотрите участок колонии мелозиры при б. увел. и зарисуйте водоросль со стороны пояска и со стороны створки. Обозначьте клетку колонии, эпитеку, гипотеку.

2. Найдите и зарисуйте ауксоспору.

Класс Пеннатные (Pennatophyceae)

Класс Пеннатные включает водоросли с двусторонней симметрией панциря, имеющие шовно-узелковый аппарат, обладают способностью передвигаться. Половой процесс – конъюгация.

Род Пиннулярия (Pinnularia)

Род Пиннулярия включает более 150 видов. Обитает в пресных, бедных известью, водоемах. Ведет бентосный образ жизни на дне или в обрастаниях подводных предметов. Пиннулярия, как и другие диатомовые водоросли, имеет большое значение как кормовая база мелких животных и является начальным звеном пищевых цепей в водных экосистемах. Это одноклеточная водоросль, имеющая шовно-узелковую структуру и вследствие этого – подвижная. Среди других одноклеточных диатомовых водорослей пиннулярия имеет крупные размеры, и поэтому удобна для изучения. С пояска панцирь имеет прямоугольные очертания, а створки – от линейных до эллиптических. Концы створок большей частью закругленные, но могут быть оттянутые и головчатые. В центре и на концах створки хорошо заметны узелки и два s-образных щелевидных отверстия (шов), идущих от периферических узелков к центральному. По краям створки хорошо заметен, особенно на пустых панцирях, четкий рисунок из параллельных перегородок – септ, не достигающих шва. Клетки пиннулярии одноядерные с двумя пластинчатыми хроматофорами, с загнутыми краями. Широкой плоской стороной хроматофор обращен в сторону пояска, а краями выходит на сторону створки. Живые активные клетки пиннулярии окрашены в желтовато-бурый цвет, так как фукоксантин маскирует зеленые пигменты, но у отмирающих клеток фукоксантин вымывается, и хроматофор становится зеленым. В клетках имеется две вакуоли, разделенные центральным цитоплазматическим мостиком. В нем заключено ядро. Пиннулярия запасает волютин, видимый в световой микроскоп как тускло блестящие шаровидные тельца, и капли масла. Под панцирем клетка одета ослизняющейся пектиновой оболочкой. Пиннулярия, обладающая шовно-узловым аппаратом, активно передвигается, ползая по субстрату.

Размножается пиннулярия делением, проходящим параллельно створкам. Каждая дочерняя створка получает одну материнскую створку, вторая же, достраивающаяся створка, всегда – гипотека. Вследствие такой особенности при каждом делении одна дочерняя клетка всегда несколько мельче материнской, и в популяции можно встретить особи разного размера. Половой процесс у пиннулярии не обнаружен, ауксоспор не образуется. Можно предположить, что крупные клетки делятся чаще, чем мелкие, а самые маленькие совсем не делятся. Жизненный цикл – монодиплобионтный.

Объект: р. пиннулярия.

Ход работы

1. Рассмотрите пиннулярию при б. увел. Зарисуйте клетку со стороны створки. Обозначьте оболочку клетки, шов, узелки, септы, хроматофор.

2. Зарисуйте клетку со стороны пояска. Обозначьте эпитеку, гипотеку.

Вопросы и задания

1. Какие уровни и типы морфологической организации характерны для представителей диатомовых водорослей?

2. Каковы особенности строения клеток диатомовых водорослей?

3. Какое строение имеет панцирь у диатомовых водорослей?

4. Каковы принципы классификации диатомовых водорослей?

5. Какие способы размножения характерны для диатомовых водорослей?

6. Как осуществляются половые процессы у диатомовых водорослей? Что такое ауксоспора?

7. Где обитают диатомовые водоросли? Какие черты приспособления к планктонному и бентосному образу жизни есть у диатомовых водорослей? Приведите примеры планктонных и бентосных диатомовых водорослей.

8. Зарисуйте схематично жизненный цикл пиннулярии и мелозиры. Подпишите на схеме, какое поколение является спорофитом, а какое гаметофитом, набор хромосом (гаплоидный или диплоидный) для каждого поколения и клеток служащих для размножения, тип редукционного деления и полового процесса. Укажите характерный для данных водорослей тип жизненного цикла.

Отдел Бурые водоросли (Phaeophyta)

Основными пигментами бурых водорослей являются хлорофиллы а и с, каротиноиды и ксантофиллы, в том числе и фукоксантин, маскирующий зеленые пигменты и придающий водорослям характерную бурую окраску. Запасные продукты – ламинарин (вещество углеводной природы); маннит – сахароспирт и в небольшом количестве жиры. Феопласты пластинчатые или чаще многочисленные дисковидные (зернистый хроматофор), расположенные в перинуклеарном пространстве под наружной мембраной ядра, которая охватывает каждый феопласт, формирует феопластную эндоплазматическую сеть. Пиреноиды выступают над поверхностью в виде почки. В клетках имеется одно ядро, крупные вакуоли с клеточным соком и мелкие вакуоли, содержащие дубильные вещества и называемые физодами.

Оболочка состоит из двух слоев: наружного ослизняющегося, содержащего альгиновую кислоту, и внутреннего, образованного особой разновидностью целлюлозы – альгулезой. Монадные клетки с двумя гетероконтными и гетероморфными жгутиками располагаются с боковой стороны клетки. Передний – длинный перистый, покрытый мастигонемами, задний – короткий гладкий. Диапазон морфологических структур большой: от нитчатых гетеротрихальных – до дифференцированных пластинчатых тканевых форм. У всех бурых водорослей, за исключением представителей порядка фукусовые, у которых отсутствует бесполое размножение и которые являются диплобионтами, наблюдается смена генераций: у одних – изоморфная, у других – гетероморфная. Эти разные типы жизненного цикла положены в основу современного деления отдела бурых водорослей на три класса.

За немногими исключениями бурые водоросли – морские, особенно богато представленные в холодных водах северного и южного полушария.

Класс Изогенератные (Isogeneratophyceae)

Класс Изогенератные включает водоросли с изоморфным чередованием поколений или с гетероморфным, но с доминированием гаметофита.

Порядок Эктокарповые (Ectocarpales) включает гетеротрихальные формы.

Род Эктокарпус (Ectocarpus)

Эктокарпус – широко распространенная морская, бентосная водоросль, встречающаяся во всех широтах в прибрежной полосе морей и океанов. Водоросль поселяется на камнях и других подводных предметах, в том числе и на растениях. Будучи толерантными к различной солености воды, эктокарпусы участвуют в обрастаниях судов. Широка и температурная амплитуда местообитаний эктокарпуса. Он растет как в холодных, так и в теплых морях, активно функционирует как летом, так и зимой. Эктокарпус – макроскопическая (до 60 см) водоросль, нитчатая гетеротрихальная, имеющая вид ветвистых кустиков.

В основании расположены горизонтальные стелющиеся ризоиды, прикрепляющие водоросль к субстрату. Вертикальные веточки в основании таллома, покрытые корой из ризоидальных нитей, к верхушке становятся тоньше и заканчиваются длинными бесцветными клетками. Нарастание идет за счет деления клеток, расположенных в разных частях таллома. В клетках эктокарпуса имеются небольшие вакуоли с клеточным соком, одно ядро в постенном слое цитоплазмы и несколько лентовидных хроматофоров с пиреноидами. В стареющих клетках хроматофор становится дисковидным.

Размножение эктокарпуса бесполое и половое. Мейозоо-споры, почковидной формы с двумя неравными жгутиками, прикрепляющимися к боковой поверхности, образуются в одноклеточных спорангиях, сидящих на одноклеточной ножке. Такие спорангии образуются на диплоидных растениях спорофитах. На гаплоидных растениях закладываются многогнездные репродуктивные органы. Каждое гнездо продуцирует одну репродуктивную клетку монадной организации. Чаще всего эти клетки ведут себя как гаметы и, сливаясь, дают зиготу. Они однотипны морфологически, но их поведение различается: физиологически женские гаметы менее подвижны и быстро оседают на дно; физиологически мужские – более активны. Из зиготы вырастает диплоидный спорофит. Описанный выше цикл соответствует дипло-гаплобионтному типу с изоморфным чередованием поколений, но у эктокарпуса имеются отклонения от этого цикла, например, гаметы могут прорастать партеногенетически без оплодотворения, давая новые гаплоидные особи. Таким образом, видимо, достигается возможно полная адаптация эктокарпуса к условиям существования и объясняется его широкая экологическая амплитуда.

Объекты: р. эктокарпус (гербарные экземпляры, микропрепараты).

Ход работы

1. Рассмотрите гербарные образцы эктокарпуса. Зарисуйте внешний вид гетеротрихального таллома эктокарпуса.

2. Рассмотрите при б. увел. и зарисуйте с препарата участки таллома эктокарпуса с многокамерными гаметангиями и однокамерными спорангиями. Обозначите клетки таллома, гаметангий, спорангий.

Класс Гетерогенератные (Heterogeneratophyceae)

Класс Гетерогенератные характеризуется гетероморфной сменой поколений с доминированием спорофита и микроскопическими мелкими гаметофитами.

Включает водоросли со сложно устроенным талломом, имеющим тканевую структуру. Нарастание осуществляется за счет деления клеток, расположенных в месте перехода листовидной части таллома в черешок (интеркалярный рост).

Род Ламинария (Laminaria)

Известны и широко распространены в северных морях два вида ламинарии: Л. сахарная (L.saccharina (L.) Lamour) и Л. пальчатая (L.digitata (Hudz.Lam)), которые в верхней сублиторали образуют целые плантации и являются промысловыми водорослями. Ламинария носит название «морская капуста» и представляет собой ценный пищевой продукт, используемый в кормлении животных, а также изготовления различных продуктов питания и лекарственных препаратов для человека.

Ламинария – крупная, сложно-дифференцированная бентосная прикрепленная водоросль, истинно тканевого строения. Ее меристематические клетки способны делиться в трех взаимно перпендикулярных направлениях и образовывать объемные структуры, в которых все клетки связаны друг с другом плазмодесмами. Таллом ламинарии дифференцирован на три четко различимые части: мощные когтевидные ризоиды, которыми она прикрепляется к субстрату, радиально симметричную часть так называемый черешок и уплощенную пластинку. Первые две структуры многолетние, а пластинка отмирает и снова нарастает благодаря интеркалярной меристеме, находящейся в верхней части черешка. Внутренняя организация тела ламинарии тоже достаточно сложна. Черешок с поверхности имеет плотно сомкнутые клетки, содержащие зерна феопластов. В более глубоких слоях клетки бесцветные и удлиненные в продольном направлении. В центре клетки расположены рыхло и образуют сердцевину. Черешок постепенно нарастает в толщину, и на поперечном срезе хорошо видны слои, напоминающие годичные кольца. В анатомическом строении пластинки тоже различают мелкоклеточную кору. В центре проходит «жилка», клетки которой напоминают по своему строению ситовидные клетки высших растений.

Размножаются ламинарии половым и бесполым путем. Спорангии располагаются на поверхности пластинки, образуя целые спороносные участки или поля, на которых палисадным слоем расположены мешковидные спорангии и удлиненные стерильные отростки-парафизы. В спорангиях после редукционного деления образуются двужгутиковые почковидные мейозооспоры, прорастающие в гаплоидные организмы. Женские и мужские гаметофиты отличаются от спорофита. Это микроскопические нитевидные, слаборазвитые растения (заростки). Они недолговечны, их основная функция – продукция гамет. Половой процесс – оогамия. Зигота без периода покоя прорастает и развивается в диплоидный спорофит. Таким образом, почти вся активная жизнедеятельность ламинарии происходит в диплоидном состоянии. Цикл развития – диплогаплобионтный с гетеротрофным чередованием поколений, с доминированием спорофита.

Конец ознакомительного фрагмента.

ВОДОРОСЛИ: КЛАССИФИКАЦИЯ ВОДОРОСЛЕЙ

К статье ВОДОРОСЛИ

В прошлом водоросли считались примитивными растениями (без специализированных проводящих, или сосудистых, тканей); их выделяли в подотдел водорослей (Algae), который вместе с подотделом грибов (Fungi) составлял отдел талломных (слоевцовых), или низших растений (Thallophyta), - один из четырех отделов царства растений (некоторые авторы вместо термина "отдел" пользуются зоологическим термином "тип"). Далее водоросли разделяли по цвету - на зеленые, красные, бурые и др. Цвет - достаточно прочная, но не единственная основа для общей классификации этих организмов. Более существенны для выделения различных групп водорослей типы формирования их колоний, способы размножения, особенности хлоропластов, клеточной стенки, запасных веществ и т.п. Старые системы обычно признавали около десяти таких групп, считавшихся классами. Одна из современных систем относит к "водорослям" (этот термин утратил классификационное значение) восемь типов (отделов) царства протистов (Protista); впрочем, такой подход признается не всеми учеными.

Зеленые водоросли составляют отдел (тип) Chlorophyta царства протистов. Обычно они цвета зеленой травы (хотя окраска может варьировать от бледно-желтой до почти черной), а фотосинтетические пигменты у них такие же, как у обычных растений. Большинство - микроскопические пресноводные формы. Многие виды растут на почве, образуя на ее влажной поверхности напоминающие войлок налеты. Бывают одно- и многоклеточными, образуют нити, шаровидные колонии, листовидные структуры и т.д. Клетки подвижные (с двумя жгутиками) или неподвижные. Половое размножение - разных уровней сложности в зависимости от вида. Видов описано несколько тысяч. Клетки содержат ядро и несколько четко оформленных хлоропластов. Один из хорошо известных родов - плеврококк (Pleurococcus), одноклеточная водоросль, образующая зеленые налеты, часто наблюдаемые на коре деревьев. Широко распространен род Spirogyra - нитчатые водоросли, образующие длинные волокна тины в ручьях и холодных речках. Весной они плавают в виде липких желтовато-зеленых скоплений на поверхности прудов. Cladophora растет в виде мягких, сильно ветвящихся "кустиков", прикрепляющихся к камням у берегов рек. Basiocladia образует зеленый налет на спине пресноводных черепах. Состоящая из многих клеток водяная сеточка (Hydrodictyon), обитающая в стоячих водах, по строению действительно напоминает "авоську". Десмидиевые - одноклеточные зеленые водоросли, предпочитающие мягкую болотную воду; их клетки отличаются причудливой формой и красиво орнаментированной поверхностью. У некоторых видов клетки соединены в нитчатые колонии. У свободноплавающей колониальной водоросли Scenedesmus серповидные или продолговатые клетки объединены в короткие цепочки. Этот род обычен в аквариумах, где его массовое размножение приводит к появлению в воде зеленого "тумана". Самая крупная зеленая водоросль - морской салат (Ulva), макрофит листовидной формы.

Красные водоросли (багрянки) составляют отдел (тип) Rhodophyta царства протистов. Большинство из них - морские листовидные, кустистые или корковые макрофиты, обитающие ниже линии отлива. Цвет их преимущественно красный из-за присутствия пигмента фикоэритрина, но может быть пурпурным или синеватым. Некоторые багрянки встречаются в пресной воде, главным образом в ручьях и прозрачных быстрых речках. Batrachospermum - студенистая на ощупь сильно ветвистая водоросль, состоящая из буроватых или красноватых похожих на бусины клеток. Lemanea - щетковидная форма, часто растущая в быстро текущих речках и водопадах, где ее талломы прикрепляются к камням. Audouinella - нитчатая водоросль, встречающаяся в мелких речках. Ирландский мох (Chondrus cripus) - обычный морской макрофит. Багрянки не образуют подвижных клеток. Их половой процесс очень сложен, и один жизненный цикл включает несколько фаз.

Бурые водоросли составляют отдел (тип) Phaeophyta царства протистов. Почти все они - обитатели моря. Лишь немногие виды микроскопические, а среди макрофитов встречаются самые крупные водоросли в мире. К последней группе относятся ламинарии, макроцистисы, фукусы, саргассумы и лессонии ("морские пальмы"), наиболее обильные по побережьям холодных морей. Все бурые водоросли многоклеточные. Цвет их варьирует от зеленовато-желтого до темно-коричневого и обусловлен пигментом фукоксантином. Половое размножение связано с образованием подвижных гамет с двумя боковыми жгутиками. Экземпляры, образующие гаметы, часто совершенно не похожи на организмы того же вида, размножающиеся только спорами.

Диатомовые водоросли (диатомеи) объединяют в класс Bacillariophyceae, который в используемой здесь классификации входит вместе с золотистыми и желто-зелеными водорослями в отдел (тип) Chrysophyta царства протистов. Диатомеи - весьма обширная группа одноклеточных морских и пресноводных видов. Окраска их от желтой до бурой из-за присутствия пигмента фукоксантина. Протопласт диатомей защищен коробчатой кремнеземной (стеклянной) оболочкой - панцирем состоящим из двух створок. Твердая поверхность створок часто покрыта характерным для вида сложным узором из штрихов, бугорков, ямок и гребней. Эти панцири - одни из самых красивых микроскопических объектов, а четкость различения их узора используется иногда для проверки разрешающей силы микроскопа. Обычно створки пронизаны порами или имеют щель, называемую швом. В клетке находится ядро. Помимо деления клеток надвое известно и половое размножение. Многие диатомеи - свободноплавающие формы, но некоторые прикреплены к подводным объектам слизистыми ножками. Иногда клетки объединяются в нити, цепочки или колонии. Различают два типа диатомей: перистые с удлиненными двусторонне-симметричными клетками (они наиболее обильны в пресных водах) и центрические, клетки которых, если смотреть со створки, выглядят округлыми или многоугольными (их больше всего в морях).

Как уже упоминалось, панцири этих водорослей сохраняются после смерти клеток и оседают на дно водоемов. С течением времени мощные их скопления уплотняются в пористую горную породу - диатомит.

Жгутиковые. Эти организмы в связи с их способностью к "животному" питанию и рядом других важных признаков сейчас нередко относят к подцарству простейших (Protozoa) царства протистов, однако их можно рассматривать и в качестве не входящего в Protozoa отдела (типа) Euglenophyta того же царства. Все жгутиковые одноклеточные и подвижные. Клетки - зеленые, красные или бесцветные. Некоторые виды способны к фотосинтезу, тогда как другие (сапрофиты) поглощают растворенную органику или даже заглатывают твердые ее частицы. Половое размножение известно лишь у некоторых видов. Обычный обитатель прудов - Euglena, зеленого цвета водоросль с красным "глазком". Она плавает с помощью единственного жгутика, способна как к фотосинтезу, так и к питанию готовой органикой. В конце лета Euglena sanguinea может окрашивать прудовую воду в красный цвет.

Динофлагеллаты. Эти одноклеточные жгутиковые организмы тоже часто причисляют к простейшим, но их можно выделять и в самостоятельный отдел (тип) Pyrrophyta царства протистов. Они в основном желто-бурые, но бывают и бесцветными. Клетки их обычно подвижны; клеточная стенка у некоторых видов отсутствует, а иногда бывает весьма причудливой формы. Половое размножение известно лишь у немногих видов. Морской род Gonyaulax - одна из причин "красных приливов": у побережий он бывает настолько обилен, что вода приобретает несвойственный ей цвет. Эта водоросль выделяет токсичные вещества, иногда приводящие к гибели рыбы и моллюсков. Некоторые динофлагеллаты вызывают фосфоресценцию воды в тропических морях.

Золотистые водоросли входят наряду с другими в отдел (тип) Chrysophyta царства протистов. Цвет их желто-бурый, а клетки бывают подвижными (жгутиковыми) или неподвижными. Размножение бесполое с образованием пропитанных кремнеземом цист.

Желто-зеленые водоросли сейчас принято объединять с золотистыми в отдел (тип) Chrysophyta, но можно считать их и самостоятельным отделом (типом) Xanthophyta царства протистов. По форме они сходны с зелеными водорослями, но отличаются преобладанием специфических желтых пигментов. Их клеточные стенки иногда состоят из двух входящих одна в другую половинок, причем у нитчатых видов эти створки в продольном сечении Н-образные. Половое размножение известно лишь у немногих форм.

Харовые (лучицы) - многоклеточные водоросли, составляющие отдел (тип) Charophyta царства протистов. Окраска их варьирует от серовато-зеленой до серой. Клеточные стенки часто инкрустированы карбонатом кальция, поэтому отмершие остатки харовых участвуют в образовании отложений мергеля. У этих водорослей есть цилиндрическая, напоминающая стебель главная ось, от которой мутовками отходят боковые отростки, похожие на листья растений. Растут харовые вертикально на мелководье, достигая в высоту 2,5-10 см. Размножение половое. Харовые вряд ли близки к какой-либо из перечисленных выше групп, хотя некоторые ботаники считают, что они произошли от зеленых водорослей. См. также СИСТЕМАТИКА РАСТЕНИЙ.

Кольер. Словарь Кольера. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ВОДОРОСЛИ: КЛАССИФИКАЦИЯ ВОДОРОСЛЕЙ в русском языке в словарях, энциклопедиях и справочниках:

  • ВОДОРОСЛИ в Энциклопедии Биология:
    , обширная группа фотосинтезирующих организмов, иногда выделяемая в особое царство растений. Включает 12 отделов (синезелёные водоросли, бурые водоросли, зелёные водоросли, …
  • ВОДОРОСЛИ
    (Algae) — низшие растительные организмы, причисляемые к подцарству споровых, или тайнобрачных, растений (Sporophyta s. Kryptogamae). Вместе с грибами и лишаями …
  • ВОДОРОСЛИ
    (Algae) ? низшие растительные организмы, причисляемые к подцарству споровых, или тайнобрачных, растений (Sporophyta s. Kryptogamae). Вместе с грибами и лишаями …
  • ВОДОРОСЛИ в Словаре Кольера:
    (Algae), обширная и неоднородная группа примитивных, напоминающих растения организмов. За немногими исключениями, они содержат зеленый пигмент хлорофилл, который необходим для …
  • КЛАССИФИКАЦИЯ в Новейшем философском словаре:
    (лат. classis - разряд, класс и f acio - делаю, раскладываю) - многоступенчатое деление логического объема понятия (логика) или какой-либо …
  • КЛАССИФИКАЦИЯ
    ТОВАРОВ - отнесение таможенными органами Российской федерации конкретных товаров к позициям, указанным в Товарной номенклатуре внешнеэкономической деятельности (ТН ВЭД) . …
  • КЛАССИФИКАЦИЯ в Словаре экономических терминов:
    ОСНОВНЫХ СРЕДСТВ -группировка основных средств, установленная Госкомстатом СССР и включающая 12 видов: здания; сооружения; передаточные устройства; машины и оборудование; транспортные …
  • КЛАССИФИКАЦИЯ в Словаре экономических терминов:
    БЮДЖЕТНАЯ - см БЮДЖЕТНАЯ КЛАССИФИКАЦИЯ …
  • КЛАССИФИКАЦИЯ в Словаре экономических терминов:
    - распределение, разнесение объектов, понятий, названий по классам, группам, разрядам, при котором в одну группу попадают объекты, обладающие к.-л. общим …
  • КЛАССИФИКАЦИЯ в Энциклопедии Биология:
    в биологии, распределение разнообразия живых организмов в определённом порядке в соответствии с системой. Классификация опирается на набор признаков, дающих возможность …
  • ВОДОРОСЛИ в Библейской энциклопедии Никифора:
    или МОРСКАЯ ТРАВА (Ион 2:6) морская, водяная трава, как читается в русском переводе в указанной цитате. Морскою травою объята была …
  • ВОДОРОСЛИ в Медицинских терминах:
    (algae) группа аутотрофных хлорофиллоносных, обычно водных низших растений, не расчлененных на корни, стебли и листья, способных усваивать углекислый газ в …
  • КЛАССИФИКАЦИЯ
    (от лат. classis - разряд класс и...фикация), в логике - система соподчиненных понятий (классов объектов) какой-либо области знания или …
  • ВОДОРОСЛИ в Большом энциклопедическом словаре:
    группа низших водных растений, обычно содержащих хлорофилл и вырабатывающих органические вещества в процессе фотосинтеза. Тело водоросли - таллом, не имеющий …
  • ВОДОРОСЛИ в Большой советской энциклопедии, БСЭ:
    (Algae), группа низших, автотрофных, обычно водных, растений; содержат хлорофилл и другие пигменты и вырабатывают органические вещества в процессе фотосинтеза. …
  • КЛАССИФИКАЦИЯ в Энциклопедическом словаре Брокгауза и Евфрона:
    весьма важный логический прием, которым пользуются при изучении предмета и который основан на логическом делении понятий. Действительно, классификация есть не …
  • КЛАССИФИКАЦИЯ в Современном энциклопедическом словаре:
  • КЛАССИФИКАЦИЯ
    (от латинского classis - разряд, класс и...фикация) (в логике), система соподчиненных понятий (классов объектов) какой-либо области знания или деятельности …
  • КЛАССИФИКАЦИЯ в Энциклопедическом словарике:
    и, ж. 1. мн. нет. Распределение тех или иных объектов по классам в зависимости от их свойств.||Ср. РУБРИКАЦИЯ. 2. …
  • КЛАССИФИКАЦИЯ в Энциклопедическом словаре:
    , -и, ж. 1. см. классифицировать. 2. Система, по к-рой что-н. .классифицировано. К. наук. Библиотечная к. II прил. классификационный, -ая, …
  • КЛАССИФИКАЦИЯ
    КЛАССИФИЌАЦИЯ ЯЗЫКОВ, изучение и группировка языков мира по разл. признакам: генетич. К.я. (генеалогич.) - по признаку родства, т.е. общего происхождения …
  • КЛАССИФИКАЦИЯ в Большом российском энциклопедическом словаре:
    КЛАССИФИЌАЦИЯ НАУК, раскрытие взаимной связи наук на основании определ. принципов (объективных, субъективных, координации, субординации и т.д.) и выражение их связи …
  • КЛАССИФИКАЦИЯ в Большом российском энциклопедическом словаре:
    КЛАССИФИЌАЦИЯ (горн.), разделение частиц измельчённых полезных ископаемых на однородные по крупности, плотности и др. продукты (классы). К. производится в …
  • КЛАССИФИКАЦИЯ в Большом российском энциклопедическом словаре:
    КЛАССИФИЌАЦИЯ (от лат. classis - разряд, класс и... фикация) (в логике), система соподчинённых понятий (классов объектов) к.-л. области …
  • ВОДОРОСЛИ в Большом российском энциклопедическом словаре:
    В́ОДОРОСЛИ, группа преим. вод. организмов, обычно содержащих хлорофилл и вырабатывающих органич. в-ва в процессе фотосинтеза. Тело В.- таллом, не имеющий …
  • КЛАССИФИКАЦИЯ в Энциклопедии Брокгауза и Ефрона:
    ? весьма важный логический прием, которым пользуются при изучении предмета и который основан на логическом делении понятий. Действительно, классификация есть …
  • КЛАССИФИКАЦИЯ
    классифика"ция, классифика"ции, классифика"ции, классифика"ций, классифика"ции, классифика"циям, классифика"цию, классифика"ции, классифика"цией, классифика"циею, классифика"циями, классифика"ции, …
  • ВОДОРОСЛИ в Полной акцентуированной парадигме по Зализняку:
    во"доросли, во"дорослей, во"дорослям, во"доросли, во"дорослями, …
  • КЛАССИФИКАЦИЯ в Словаре лингвистических терминов:
    (от лат. classis — разряд + facere — девать) гласных см. гласные звуки …
  • КЛАССИФИКАЦИЯ в Популярном толково-энциклопедическом словаре русского языка:
    -и, ж. 1) Система соподчиненных понятий (классов объектов) в какой-л. отрасли знания, составленная на основе учета свойств объектов и закономерных …
  • КЛАССИФИКАЦИЯ в Тезаурусе русской деловой лексики:
  • КЛАССИФИКАЦИЯ в Новом словаре иностранных слов:
    (лат. ; см. классифицировать) 1) система соподчиненных понятий (классов объектов, явлений) в какой-л. отрасли знания, составленная на основе …
  • КЛАССИФИКАЦИЯ в Словаре иностранных выражений:
    [ лат.; см. классифицировать] 1. система соподчиненных понятий (классов объектов, явлений) в какой-л. отрасли знания, составленная на основе учета общих …
  • КЛАССИФИКАЦИЯ в Тезаурусе русского языка:
    Syn: классифицирование, систематизация, систематизирование, систематика, группировка, сортировка, размещение, …
  • КЛАССИФИКАЦИЯ в Словаре синонимов Абрамова:
    см. …
  • КЛАССИФИКАЦИЯ в словаре Синонимов русского языка:
    Syn: классифицирование, систематизация, систематизирование, систематика, группировка, сортировка, размещение, …
  • КЛАССИФИКАЦИЯ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    ж. 1) То же, что: классифицирование. 2) Система распределения каких-л. однородных предметов или понятий по классам, разрядам и т.п. согласно …

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

1. ВОДОРОСЛИ (ALGAE )

1.1 ОБЩАЯ ХАРАКТЕРИСТИКА

Водоросли представляют собой сборную группу преимущественно водных организмов. Характерной особенностью всех водорослей является то, что их тело не расчленено на вегетативные органы (корень, стебель, лист), а представлено талломом, или слоевищем. По этой причине их называют талломными, или слоевищными организмами. В отличие от высших растений у них обычно отсутствуют ткани, а органы полового размножения, как правило, одноклеточные. Общим для водорослей является их способность к автотрофному способу питания благодаря наличию фотосинтезирующего аппарата. Вместе с тем у некоторых водорослей наряду с автотрофным питанием существует и гетеротрофное.

Известно более 40000 видов водорослей, которые объединяются в 11 отделов: диатомовые - около 20000 видов, зеленые - 13-20000, красные - около 4000, синезеленые - около 2000, бурые - около 1000, динофитовые и криптофитовые - более 1000, желтозеленые, золотистые, харовые - свыше 300 в каждом отделе, эвгленовые - около 840 видов. По данным известного белорусского альголога Т.М. Михеевой (1999) в Беларуси установлено 1832 вида водорослей, а вместе с внутривидовыми таксонами - 2338 представителей. Обнаруженные виды принадлежат к 363 родам 134 семействам из 10 отделов. При этом 21 вид водорослей занесен в Красную книгу Республики Беларусь.

Структура водорослей. Водоросли в пределах слоевищного типа строения отличаются исключительным морфологическим разнообразием. Их тело может быть одноклеточным, колониальным, многоклеточным. Их размеры в пределах каждой из этих форм отличаются огромным диапазоном - от микроскопических (1мкм) до гигантских (есть виды, достигающие нескольких десятков метров). С учетом большого морфологического разнообразия вегетативного тела водоросли по структуре можно разделить на несколько категорий, образующих главнейшие ступени морфологической эволюции.

Монадная (жгутиковая) структура свойственна одноклеточным и колониальным организмам и характеризуется наличием у них клеток одного, двух или нескольких жгутиков, обусловливающих активное движение в воде. Эта структура преобладает у динофитовых и криптофитовых, золотистых и эвгленовых водорослей. У более высокоорганизованных водорослей монадное строение имеют клетки, служащие для бесполого (зооспоры) или полового (гаметы) размножения.

Амебоидная (ризоподиальная) структура характеризуется отсутствием постоянной формы клетки, плотной оболочки и жгутиков. Передвигаются эти водоросли, как и амебы, с помощью псевдоподий, которые сохранились у динофитовых, золотистых и желтозеленых водорослей.

Пальмеллоидная (гемимонадная или капсальная) структура представляет собой соединение множества неподвижных клеток, погруженных в общую слизь, но не имеющих плазматических связей. Пальмеллоидная структура широко представлена у зеленых, желтозеленых и золотистых водорослей; в других отделах она встречается реже или вообще отсутствует.

Коккоидная структура характеризуется неподвижными клетками различной формы и размеров, с плотной клеточной стенкой, одиночными или соединенными в колонии (ценобии). Такая структура встречается почти во всех отделах (за исключением эвгленовых) водорослей, а у диатомовых она является единственной; у других представителей наблюдается в циклах развития (апланоспоры, акинеты, тетраспоры и др.).

Нитчатая (трихальная) структура в мире водорослей является простейшей формой многоклеточного слоевища и представляет собой соединение неподвижных клеток в нити, между которыми осуществляется физиологическое взаимодействие с помощью плазмодесм. Нити могут быть простыми и ветвящимися, свободноживущими, прикрепленными и объединенными чаще всего в слизистые колонии. Нитчатая структура представлена среди зеленых, золотистых, желтозеленых, красных водорослей.

Разнонитчатая (гетеротрихальная) структура является более сложным вариантом нитчатого строения, для которого характерны две системы нитей: стелющиеся по субстрату и отходящих от них вертикально.

Гетеротрихальная структура свойственна многим синезеленым, зеленым, харовым, золотистым, желтозеленым, красным и бурым водорослям и может быть постоянной или временной формой.

Псевдопаренхиматозная (ложнотканевая) структура характеризуется образованием крупных объемных слоевищ в результате срастания нитей разнонитчатого слоевища, иногда сопровождаемого дифференциацией «тканей». Поскольку последние по способу образования отличаются от настоящих их называют ложными тканями. Встречается у некоторых красных водорослей.

Сифональная (сифоновая) структура - слоевище, часто крупных размеров и сложной морфологической дифференцировки, без клеточных перегородок и обычно с множеством ядер. Сифональный тип организации представлен у некоторых зеленых и желтозеленых водорослей.

Сифонокладальная структура встречается у некоторых нитчатых зеленых водорослей, для которых свойственно сегрегационное деление многоядерных клеток: протопласт распадается на окруженные мембраной округлые части, дающие начало новым сегментам таллома.

Строение клетки. Организация клетки большинства водорослей (кроме синезеленых) мало отличается от организации типичных клеток высших растений, однако имеет и свои особенности. Клетка большинства водорослей одета постоянной клеточной оболочкой, имеет двухфазную систему, состоит из аморфного матрикса, гемицеллюлозы или пектиновых веществ, в которые погружены волокнистые скелетные элементы - микрофибриллы. У многих водорослей откладываются добавочные компоненты: карбонат кальция (харовые, ацетобулярия, падина), альгиновая кислота (бурые), железо (красные). В жизни растительной клетки важную роль играет наличие в оболочке сначала пектиновой, а затем целлюлозной фракций, обеспечивающих опорную и защитную функции, а также способность к проницаемости и росту. Клеточная оболочка бывает цельной или состоит из двух и более частей, пронизана порами, может нести различные выросты. Под оболочкой находится протопласт, включающий цитоплазму и ядро.

Водоросли - единственная группа, где имеются все три типа клеточной организации: прокариотическая (синезеленые водоросли, где ядер нет, их роль выполняет нуклеоид); мезокариотическая (динофитовые, есть ядро, но примитивное) и эукариотическая (водоросли остальных отделов - настоящие ядерные организмы).

Цитоплазма у большинства водорослей расположена тонким постенным слоем, окружая большую центральную вакуоль с клеточным соком. Вакуоль отсутствует в клетках синезеленых водорослей и монадных (у пресноводных монадных форм отмечены пульсирующие вакуоли). В цитоплазме эукариотных водорослей хорошо различимы элементы эндоплазматической сети, рибосомы, митохондрии, аппарат Гольджи, хроматофоры, клеточные ядра; имеются также лизосомы, пероксисомы, сферосомы.

В клетках водорослей (за исключением синезеленых) из органелл особенно заметны хроматофоры (хлоропласты), которые в отличие от хлоропластов высших растений разнообразны по форме, окраске, числу, строению и местоположению в клетке. Они могут быть чашевидными (хламидомонада), спиральными (спирогира), пластинчатыми (пеннатные диатомеи), цилиндрическими (эдогониум). У многих водорослей хроматофоры многочисленны и имеют вид зерен или дисков, расположенных в постенной цитоплазме (зеленые с сифоновой организацией, бурые, красные). Хроматофоры окружены оболочкой, состоят из стромы, пластинчатых структур, которые напоминают уплощенные мешочки и называются тилакоидами. В них сосредоточены пигменты. Кроме того, в матриксе хроматофора находятся рибосомы, ДНК, РНК, липидные гранулы и особые включения пиреноиды. Пиреноид является специфическим образованием, присущим всем водорослям (за исключением синезеленых) и небольшой группе мхов.

Размножение водорослей. Бесполое размножение у одноклеточных водорослей осуществляется путем деления клетки, у колониальных и нитчатых - в результате распада колоний или нитей на отдельные фрагменты; у немногих водорослей образуются специальные органы размножения, например клубеньки у харовых, акинеты (особые клетки с большим количеством запасных веществ и пигментов) - у зеленых и др. Такое размножение часто называют вегетативным.

Бесполое размножение происходит также посредством неподвижных спор (апланоспор) или зооспор (спор со жгутиками), образующихся путем деления протопласта обычных или особых клеток, называемых спорангиями. У ряда представителей зеленых водорослей апланоспоры уже в материнской клетке иногда приобретают все отличительные черты этой клетки. В таких случаях говорят об автоспорах. Размножение при помощи спор называется собственно бесполым размножением.

Половое размножение характеризуется наличием полового процесса, одним из важнейших этапов которого является оплодотворение, т.е. слияние гаплоидных половых клеток - гамет. В результате оплодотворения образуется зигота с новой комбинацией наследственных признаков, которая и становится родоначальницей нового организма.

У водорослей различают следующие формы полового процесса: хологамию - слияние двух одноклеточных особей; изогамию - слияние одинаковых по строению и величине подвижных гамет; гетерогамию - слияние подвижных гамет разных размеров (более крупную считают женской); оогамию - слияние крупной неподвижной яйцеклетки с мелкой подвижной мужской гаметой - сперматозоидом или неподвижным, лишенным оболочки спермацием (у красных водорослей); конъюгацию - слияние протопластов неспециализированных клеток. Гаметы образуются в клетках, не отличающихся от вегетативных, или в особых клетках, получивших название гаметангии. Гаметангии, содержащие яйцеклетку (редко несколько), называются оогониями, а те, в которых формируются сперматозоиды или спермации, - антеридиями. У примитивных водорослей каждая особь способна формировать и споры, и гаметы в зависимости от времени года и внешних условий; у других функции бесполого и полового размножения выполняют разные особи - спорофиты (образуют споры) и гаметофиты (образуют гаметы). Основные типы жизненных циклов водорослей.

1. Гаплофазный тип характеризуется отсутствием чередования поколений. Вся вегетативная жизнь водорослей проходит в гаплоидном состоянии, т. е. они являются гаплонтами. Диплоидна лишь зигота, прорастание которой сопровождается редукционным делением ядра (зиготическая редукция). Развивающиеся при этом растения оказываются гаплоидными. Примером являются многие зеленые (вольвоксовые, большинство хлорококковых, конъюгаты) и харовые водоросли.

2. Диплофазный тип отличается тем, что вся вегетативная жизнь водорослей осуществляется в диплоидном состоянии, а гаплоидная фаза представлена только гаметами. Перед их образованием происходит редукционное деление ядра (гаметическая редукция). Зигота без деления ядра прорастает в диплоидный таллом. Эти водоросли являются диплонтами. Такой тип развития характерен для многих зеленых водорослей, имеющих сифоновую структуру, всех диатомовых и некоторых представителей бурых (порядок Фукальные).

3. Диплогаплофазный тип характеризуется тем, что в клетках диплоидных талломов (спорофитов) многих водорослей редукционное деление ядра предшествует образованию зоо- или апланоспор (спорическая редукция). Споры развиваются в гаплоидные растения (гаметофиты), размножающиеся только половым путем. Оплодотворенная яйцеклетка - зигота - прорастает в диплоидное растение, несущее органы бесполого размножения. Таким образом, у этих водорослей имеет место чередование форм развития (генераций): диплоидного бесполого спорофита и гаплоидного полового гаметофита. Оба поколения по внешнему виду могут не различаться и занимать одинаковое место в цикле развития (изоморфная смена генераций) или же резко различаться по морфологическим признакам (гетероморфная смена генераций). Изоморфная смена генераций характерна для ряда зеленых (ульва, энтероморфа, кладофора), бурых и большинства красных водорослей. Гетероморфная смена генераций встречается с преобладанием как гаметофита, так и спорофита (свойственна преимущественно бурым, реже зеленым и красным водорослям).

Основной средой жизни для водорослей служит вода. Кроме того, исключительно важную роль в их жизнедеятельности играют такие факторы, как свет, температура, соленость воды, химический состав субстрата и др. В зависимости от экологических условий водоросли образуют различные группировки или сообщества (ценозы), каждое из которых характеризуется более или менее определенным видовым составом.

1.2 МЕТОДЫ СБОРА, ХРАНЕНИЯ И ИЗУЧЕНИЯ ВОДОРОСЛЕЙ

Водоросли можно собирать с ранней весны до поздней осени, а наземные - на местах, не покрытых снегом, в течение всего года. Для их сбора необходимо брать банки с широким горлом и хорошо пригнанными пробками, сумку для них, нож, острый скребок, планктонную сетку, пузырек с формалином, коробки или полиэтиленовые мешки для сбора наземных водорослей, писчую бумагу для этикеток, блокнот для записей, карандаш.

Методы сбора и изучения водорослей определяются прежде всего эколого-морфологическими особенностями представителей различных отделов и экологических группировок. Рассмотрим основные методы сбора и изучения водорослей различных водоемов для целей флористико-систематических и частично гидробиологических исследований.

Сбор фитопланктона. Выбор метода отбора проб фитопланктона зависит от типа водоема, степени развития водорослей, задач исследования, имеющихся в наличии приборов, оборудования и т. п. С целью изучения видового состава фитопланктона при интенсивном развитии последнего воду достаточно зачерпнуть из водоема, а при слабом применяются различные методы предварительного концентрирования микроорганизмов, обитающих в толще воды. Одним из таких методов является фильтрование воды через планктонные сети (описание планктонной сети и других устройств и приборов для сбора водорослей).

При сборе планктона поверхностных слоев водоема планктонную сеть опускают в воду так, чтобы верхнее отверстие сети находилось на расстоянии 5-10 см над поверхностью воды. Сосудом определенного объема черпают воду из поверхностного слоя (до 15-20 см глубины) и выливают ее в сеть, отфильтровывая таким образом 50-100 л воды. На крупных водоемах планктонные пробы отбирают с лодки: планктонную сеть тянут на тонкой веревке за движущейся лодкой в течение 5-10 мин. Для вертикальных сборов планктона применяют сети особой конструкции. На небольших водоемах планктонные пробы можно собирать с берега, осторожно черпая воду сосудом впереди себя и фильтруя ее через сеть или забрасывая сеть на тонкой веревке в воду и осторожно вытягивая ее. Для количественного учета фитопланктона объем проб производится специальными приборами - батометрами - разнообразной конструкции. Широкое применение в практике получил батометр системы Рутнера. Его основная часть - цилиндр, изготовленный из металла или оргстекла, вместимостью от 1 до 5 л. Прибор снабжен верхней и нижней крышками, плотно закрывающими цилиндр. Под воду батометр опускают с открытыми крышками. При достижении необходимой глубины в результате сильного встряхивания веревки крышки закрывают отверстия цилиндра, который в закрытом виде извлекают на поверхность. Заключенную в цилиндре воду через боковой патрубок, снабженный краном, сливают в приготовленный сосуд. При изучении фитопланктона поверхностных слоев воды пробы отбирают без помощи батометра путем зачерпывания воды в сосуд определенного объема.

Сбор фитобентоса. Для изучения видового состава фитобентоса на поверхности водоема достаточно извлечь некоторое количество донного грунта и отложений на нем. На мелководьях (до 0,5-1,0 м глубины) это достигается с помощью опущенной на дно пробирки или сифона - резинового шланга со стеклянными трубками на концах, в который засасывают наилок. На глубинах качественные пробы отбирают с помощью ведерка или стакана, прикрепленного к палке, а также различными грабельками, «кошками», драгами, дночерпателями, илососами и т. п.

Сбор перифитона. С целью изучения видового состава перифитона налет на поверхности разнообразных подводных предметов (галька, щебень, камни, стебли и листья высших растений, раковины моллюсков, деревянные и бетонированные части гидротехнических сооружений и др.) снимают с помощью обычного ножа или специальных скребков. Однако при этом гибнут многие интересные организмы; часть их уносится токами воды, разрушаются органы прикрепления водорослей к субстрату, нарушается картина взаимного размещения компонентов биоценоза. Поэтому водоросли лучше собирать вместе с субстратом, который полностью или частично осторожно извлекают на поверхность воды так, чтобы течение не смыло с него водоросли. Извлеченный субстрат (или его фрагмент) вместе с водорослями помещают в приготовленный для пробы сосуд и заливают лишь небольшим количеством воды из этого же водоема с целью дальнейшего изучения собранного материала в живом состоянии либо 4%-ным раствором формальдегида. Наземные, или воздушные водоросли собирают по возможности вместе с субстратом в стерильные бумажные пакеты или в стеклянные сосуды с 4%-ным раствором формальдегида.

Этикетирование и фиксация проб. Ведение полевого дневника. Для изучения водорослей в живом и фиксированном состоянии собранный материал делят на две части. Живой материал помещают в стерильные стеклянные сосуды (пробирки, колбы, баночки), закрытые ватными пробками, причем не заполняя их доверху, или в стерильные бумажные пакеты. Чтобы лучше сохранить водоросли в живом состоянии в экспедиционных условиях, водные пробы упаковывают во влажную оберточную бумагу и помещают в ящики. Пробы должны периодически распаковываться и выставляться на рассеянный свет для поддержания фотосинтетических процессов и обогащения среды кислородом.

Собранные пробы тщательно этикетируют. На этикетках, заполняемых простым карандашом или пастой, указывают номер пробы, время и место сбора, орудие сбора и фамилию сборщика. Эти же данные фиксируют и в полевом дневнике, в который, кроме того, заносят результаты измерений рН, температуры воды и воздуха, схематический рисунок, подробное описание исследуемого водоема, развивающейся в нем высшей водной растительности и другие наблюдения.

Качественное изучение собранного материала. Материал предварительно просматривают под микроскопом в живом состоянии в день сбора, чтобы отметить качественное состояние водорослей до наступления изменений, вызванных хранением живого материала или фиксацией проб (образование репродуктивных клеток, колоний, потеря жгутиков и подвижности и т. д.). В дальнейшем его изучают параллельно в живом и фиксированном состоянии. Для микроскопического изучения водорослей готовят препараты: на предметное стекло наносят каплю исследуемой жидкости и накрывают ее покровным стеклом. Если водоросли обитают вне воды, их помещают в каплю водопроводной воды или оводненного глицерина. При необходимости длительных наблюдений над одним и тем же объектом хороший результат дает метод висячей капли. На чистое покровное стекло наносят маленькую каплю исследуемой жидкости, после чего покровное стекло, края которого покрыты парафином, парафиновым маслом или вазелином, накладывают каплей вниз на специальное предметное стекло с лункой посередине так, чтобы капля не касалась дна лунки. Такой препарат можно изучать в течение нескольких месяцев, сохраняя его в перерывах между работой во влажной камере. При идентификации водорослей следует добиваться точности их определения. Изучая оригинальный материал, необходимо отмечать любые, даже незначительные отклонения в размерах, форме и других морфологических особенностях, фиксировать их в описаниях, на рисунках и микрофотографиях.

Методика количественного учета водорослей. Количественному учету могут подвергаться пробы фитопланктона, фитобентоса и перифитона. Данные о численности водорослей являются исходными для определения их биомассы и пересчета других количественных показателей на клетку или единицу биомассы. Численность водорослей может быть выражена в количестве клеток, ценобиев, отрезков нитей определенной длины и др. Учет численности планктонных водорослей производят при помощи счетных камер (Фукс-Розенталя, Нажотта, Горяева и др.) при увеличении микроскопа в 420 раз. Полученное по меньшей мере из трех подсчетов среднее количество водорослей пересчитывают на определенный объем воды. Так как субстратом для поселения водорослей могут быть подводные предметы (камни, сваи, растения, животные и т. п.), то в одних случаях количество водорослей рассчитывают на единицу поверхности, в других - на единицу массы.

1.3 ПОЛОЖЕНИЕ ВОДОРОСЛЕЙ В СОВРЕМЕННОЙ СИСТЕМЕ ОРГАНИЧЕСКОГО МИРА

Для создания естественной системы органического мира систематики используют совокупность наиболее значимых признаков организмов, входящих в ту или иную таксономическую категорию. К таким признакам относятся:

1) историческое развитие группы живых организмов по ископаемым остаткам;

2) особенности морфологического и анатомического строения современных видов;

3) особенности размножения и эмбрионального развития;

4) физиологические и биохимические особенности;

5) кариотип, определяемый числом, размером и формой хромосом;

6) тип запасных питательных веществ

7) распространение на нашей планете и ряд других.

Общепринятая система органического мира пока не создана. До сих пор у разных авторов число выделяемых империй, царств, подцарств, типов (отделов) неодинаково. Принципиально новым моментом в этой системе органического мира в сравнении с предыдущим и является выделение царства Протисты. Название «царство Протисты» (Protista ) предложено в 1866 году Э. Геккелем. В течение большей части ХХ столетия сторонники выделения протистов в отдельное царство упрочили свои позиции, хотя и исключили из него бактерии и губки, но дополнили его остальными простейшими, а также некоторыми грибами и водорослями. В настоящее время в состав царства Protista многие авторы относят все одноклеточные и колониальные эукариотные организмы, независимо от типа питания и функционирования. Это значит, что их рассматривают как особый уровень организации живой материи. Понимание протистов именно как дотканевых (а не одноклеточных) позволяет различным авторам систем включать в их состав (в зависимости оттого, что автор понимает под тканью) все или некоторые группы многоклеточных водорослей (зеленые, красные, бурые), грибоподобные организмы, или «псевдогрибы» - гифохитридиевые (Hyphochytridiomycota ), оомицеты (Oomycota ) и лабиринтуловые (Labyrinthulomycota ). В результате царство Протисты объединило чрезвычайно разнородную группу организмов, часть из которых включали раньше в царство Животные (Простейшие), царство Грибы (акразиевые и плазмодиальные миксомицеты, большинство низших грибов - хитридиомицеты и оомицеты), а также в царство Растения (эвгленовые, динофитовые, криптофитовые, диатомовые, золотистые, желтозеленые, зеленые водоросли).

Таким образом, для современной систематики водорослей характерно наличие множества систем, различающихся между собой в большей или меньшей степени не только на уровне небольших таксонов (родов, семейств, порядков, классов) но и на самых высоких таксономических уровнях (отделы, подцарства, царства,). Например, харовые водоросли в одном и том же объеме рассматриваются различными авторами в качестве отдела, класса или даже порядка. Более того, в одной системе их относят к царству Растения, в другой - к царству Protista или Chromista . Вместе с тем по ряду существенных признаков (наличие как у зеленых растений хлорофилла а , каротиноидов, а также фикобилинов как у красных водорослей, оксигенный тип фотосинтеза и др.) цианобактерии очень схожи с водорослями. В этой связи их часто называют синезелеными водорослями и рассматривают в курсе альгологии.

2. ХАРАКТЕРИСТИКА ВОДОРОСЛЕЙ

2.1 ОТДЕЛ ЖЕЛТОЗЕЛЕНЫЕ (XANTHOPHYTA )

К отделу Желтозеленые водоросли относятся организмы, стоящие на разных ступенях морфологической дифференцировки таллома, - одноклеточные, колониальные и многоклеточные. Среди них встречаются преимущественно коккоидные, пальмеллоидные или нитчатые структуры, реже - амебоидные, монадные, сифональные и пластинчатые. Для подвижных форм желтозеленых водорослей (в том числе и для зооспор) характерны наличие двух неравных по размерам жгутиков (боковой - короткий, бичевидный и передний - длинный с мастигонемами) и желто-зеленая окраска хроматофоров, обусловленная наличием хлорофиллов а и с, каротинов в и е, ксантофиллов (антераксантин, лютеин, зеаксантин, вошериаксантин, виолаксантин и неоксантин). В зависимости от преобладания тех или иных пигментов встречаются виды со светло- или темно-желтой окраской, реже зеленой и у некоторых - голубой. Запасные продукты - волютин, жир, часто хризоламинарин. У примитивных форм содержимое клетки окружено тонким перипластом, а у более высокоорганизованных представителей имеется пектиновая или целлюлозная оболочка (цельная или двухстворчатая). Оболочка клеток часто пропитана солями железа, кремнеземом, известью, имеет различные скульптурные украшения.

В протопласте клетки есть несколько хроматофоров, которые могут быть дисковидной, пластинчатой, ленто- или чашевидной или звездчатой формы. Ядро одно или много. У некоторых видов имеются пиреноиды. У подвижных форм отмечена стигма. Желтозеленые водоросли могут размножаться продольным делением клетки, распадением колоний или нитей на отдельные участки, а также зоо- или апланоспорами. Половой процесс (изо- или оогамия) известен у немногих. Для перенесения неблагоприятных условий у отдельных видов образуются цисты со слабоокремневшей двухстворчатой оболочкой. Водоросли этого отдела встречаются главным образом в чистых пресноводных водоемах, реже в морях и солоноватых водах и почве.

2.1.1 Класс Ксантофициевые (Xanthophyceae )

Этот класс включает одноклеточные и многоклеточные организмы, преимущественно коккоидной структуры, реже наблюдается монадная, ризоподиальная, пальмеллоидная, нитчатая, разнонитчатая или сифоновая структура тела. Монадные формы и стадии с двумя неравными жгутиками и стигмой, расположенной на переднем крае хроматофора, под его оболочкой. Хроматофоры окружены каналом эндоплазматического ретикулума, продолжающимся в наружную мембрану ядерной оболочки.

В соответствии с типами организации таллома класс делят на шесть порядков: гетерохлоридальные (Heterochloridales ), ризохлоридальные (Rhizochloridales ), гетероглеальные (Heterogloeales ), мисхококкальные (Mischococcales ), ботридиальные (Botrydiales ) и трибонематальные (Tribonematales ).

Порядок Ботридиальные (Botridiales ). Для представителей порядка характерна сифональная структура таллома. Внешне они могут иметь сложную форму, но по строению протопласта представляют собой одну гигантскую многоядерную клетку. Как правило, таллом дифференцирован на окрашенную наземную и бесцветную подземную части. Типичными представителями порядка являются роды ботридиум и вошерия.

Род ботридиум (Botrydium ) объединяет наземные прикрепленные сифональные водоросли, имеющие шаро-, груше- или булавовидную форму. Подземная часть у них представляет дихотомически разветвленную систему бесцветных ризоидов. Клетка покрыта пектиновой оболочкой, которая, пропитываясь известью, с возрастом грубеет. В постенном слое цитоплазмы располагаются пластинчатые или дисковидные хроматофоры и многочисленные капли масла. Мелкие ядра видны только после окраски.

Размножается ботридиум зооспорами, иногда авто- или апланоспорами. При неблагоприятных условиях (продолжительное высыхание) содержимое наземной части (шарика) перемещается в ризоиды и распадается на отдельные части, покрытые толстой оболочкой, образуя покоящиеся цисты - ризоцисты. С наступлением благоприятных условий ризоцисты прорастают в новые особи непосредственно или через стадию зооспор.

Известно более 10 видов, в том числе 1 вид - Б. зернистый (В. granulatum ) - в Беларуси. Развиваются на глинисто-илистых отложениях берегов водоемов, на дне подсыхающих прудов, в колеях проселочных и лесных дорог, на влажных, богатых питательными веществами почвах с повышенным содержанием извести.

Род вошерия (Vaucheria ) включает водоросли, таллом которых представляет собой неправильно и редко ветвящиеся нити нежного светло-зеленого цвета с бесцветными ветвящимися ризоидами. Это одна гигантская многоядерная клетка. Центральную часть ее занимает крупная вакуоль с клеточным соком. В постенном слое цитоплазмы расположены многочисленные дисковидные хроматофоры без пиреноидов и капельки масла.

Бесполое размножение осуществляется многожгутиковыми и многоядерными зоо- и апланоспорами. При этом содержимое на концах ветвей становится более густым и темным, отчленяется перегородкой от общей нити и превращается в зооспорангий, где формируется одна крупная зооспора с многочисленными парными жгутиками по периферии.

Половой процесс у вошерии оогамный. На нити или на особых коротких ветвях образуются антеридий и около него один-два или несколько оогониев. При созревании яйцеклетки из носика оогония выступает капелька содержимого, привлекающего сперматозоиды. Один из них (с двумя жгутиками неравной длины) внедряется в оогоний через образовавшееся отверстие и оплодотворяет яйцеклетку. После оплодотворения в оогонии развивается ооспора с толстой оболочкой, содержащая много масла и гематохрома. После периода покоя в ней происходит редукционное деление ядра и она прорастает в новую гаплоидную нить.

Известно 62 вида, распространенные по всему земному шару. В Беларуси отмечен 1 вид - Vaucheria De Candolle sp .

Порядок Трибонематальные (Tribonematales ). Он объединяет формы, характеризующиеся нитчатой структурой таллома. Это наиболее высокоорганизованные представители желтозеленых водорослей. По внешнему виду они сходны с улотриксовыми из отдела Зеленые и многими видами из отдела Золотистые водоросли. Типичным представителем данного порядка является род трибонема.

Род трибонема (Tribonema ) включает водоросли, нити которых неразветвлены. Вначале они прикреплены к какому-либо субстрату с помощью базальной клетки, затем вследствие ее отмирания всплывают на поверхность водоема и встречаются уже как свободно плавающие, образуя тину желто-зеленого цвета. Характерным признаком, по которому нити трибонемы легко отличить от других нитчатых водорослей, является своеобразное очертание их концов в виде двух рожек. Это связано с тем, что оболочка клеток у трибонемы крепкая, двухстворчатая и состоит из двух одинаковых половинок. Край одной половинки находит на край другой посередине клетки. При делении клетки из средней ее части формируется цилиндрический участок новой оболочки, в котором закладывается поперечная перегородка. Таким образом, половинки соседних клеток прочно соединены друг с другом и при разрыве нити на части или ее распаде на отдельные клетки образуются характерные Н-образные фрагменты оболочки. Хроматофоров в каждой клетке трибонемы обычно несколько, дисковидной формы, без пиреноидов. При размножении в клетках образуются одна или две разножгутиковые зооспоры или апланоспоры, при выходе которых створки расходятся, и нить водоросли распадается. Для перенесения неблагоприятных условий служат акинеты с толстой клеточной стенкой или цисты. Известно 22 вида трибонем, из них 6 в Беларуси. Распространены преимущественно в прибрежной зоне различных водоемов на водных растениях, камнях, отдельные - в почве; часто образуют мягкие ватообразные, неослизненные, желто-зеленые дернинки.

2.2 ОТДЕЛ БУРЫЕ ВОДОРОСЛИ (PHAEOPHYTA )

К отделу Бурые водоросли относятся многочисленные, преимущественно макроскопические многоклеточные водоросли простого и сложного строения. Размеры их варьируют от нескольких миллиметров до нескольких метров (иногда до 60 м и более). Таллом нарастает в результате интеркалярного роста или за счет деятельности верхушечной клетки. По внешнему виду это ветвистые кустики, корочки, пластинки, шнуры, ленты, сложно расчлененные на стебле- и листовидные органы. Слоевища некоторых крупных представителей имеют воздушные пузыри, удерживающие ветви в воде в вертикальном положении. Для прикрепления к грунту служат ризоиды или дисковидное разрастание в основании слоевища - базальный диск.

По морфологической и анатомической дифференцировке таллома бурые водоросли стоят на более высоком уровне, чем все другие группы. Среди них не известны ни одноклеточные, ни колониальные формы, ни талломы в виде простой неразветвленной нити. Таллом самых простейших из ныне живущих бурых водорослей гетеротрихальный, у громадного же большинства талломы ложно- или истиннотканевого строения (выделяют ассимиляционные, запасающие, механические, проводящие ткани).

Оболочка клеток снаружи ослизненная, состоит из пектиновых веществ и внутреннего целлюлозного слоя. Слизь защищает клетки от механических воздействий, пересыханий во время отлива и т. п. В цитоплазме находится одно ядро и хроматофоры дисковидной, реже лентовидной или пластинчатой формы, вакуоли, у многих видов пиреноиды.

Хроматофоры клеток бурых водорослей содержат хлорофиллы а и с, каротины и несколько ксантофиллов - фукоксантин, виолаксантин, антераксантин и зеаксантин. Эти пигменты определяют бурую окраску водорослей. Продуктами запаса являются полисахарид ламинарин, шестиатомный спирт маннит и липиды. У бурых водорослей встречаются обе формы размножения: бесполое и половое.

Бесполое размножение осуществляется участками таллома. У некоторых водорослей имеются специализированные веточки (выводковые почки), которые легко отделяются и дают новые растения. Кроме того, у большинства бурых водорослей бесполое размножение происходит посредством зооспор, у отдельных представителей - тетраспор и у единичных видов - моноспор. Зооспоры развиваются в одно- или многогнездных спорангиях. Образованию спор предшествует мейоз (исключение составляют циклоспоровые, у которых мейоз происходит перед формированием гамет).

Половой процесс изо-, гетеро- и оогамный. При изо- или гетерогамии гаметы образуются в многогнездных, многокамерных гаметангиях, которые могут развиваться из одной или многих клеток. У наиболее высокоорганизованных бурых водорослей половой процесс оогамный. Яйцеклетка оплодотворяется вне оогония. Зигота без периода покоя прорастает в диплоидное растение.

Для большинства бурых водорослей характерна смена форм развития: для одних - изоморфная, для других - гетероморфная. Эти разные типы жизненного цикла ранее были положены в основу деления отдела Бурые водоросли на 3 класса: изогенератные с изоморфным циклом развития, гетерогенератные с гетероморфным циклом развития и циклоспоровые с одним порядком Фукальные, где чередование поколений отсутствует. Однако деление бурых водорослей на изогенератные и гетерогенератные довольно условно, поскольку в обоих классах существуют представители с противоположным типом смены форм развития. Поэтому более правильным подходом к классификации бурых водорослей считается деление их на два класса - Фэозооспоровые (Phaeoz о osporophyceae ) и Циклоспоровые (Cyclosporophyceae ).

Бурые водоросли почти все живут в морях как донные, эпифитные или вторично планктонные организмы. Заросли бурых водорослей являются пищей, местом размножения и укрытия многих видов животных, субстратом для микро- и макроорганизмов, одним из основных источников органики в умеренных и приполярных широтах. Они широко применяются в промышленности (пищевая, парфюмерная, текстильная) благодаря наличию таких ценных веществ, как альгиновая кислота, альгинат, маннит и др.

2.2.1 Класс Фэозооспорофициевые (Phaeozo о sporophyceae )

Для большинства водорослей класса Фэозооспорофициевые характерны 2 самостоятельные формы развития - спорофит и гаметофит или гаметоспорофит, которые могут быть сходными по внешнему виду, строению и размерам и разными, т.е. имеется изоморфная и гетероморфная смена форм развития. У примитивных представителей смена форм развития отсутствует.

Класс Фэозооспорофициевых делят на 11 порядков, из которых ниже приводятся 5.

Порядок Эктокарнальные (Ectocarpales ). Включает бурые водоросли, слоевища (как спорофита, так и гаметофита) которых построены из однорядных нитей, способных ветвиться. Размеры их варьируют от микроскопических до 30 и более сантиметров. Эти водоросли образуют налет или кустики на скалах либо на других водорослях. Размножаются бесполым и половым путями. Органами размножения служат одно- и многогнездные вместилища. Одногнездные всегда являются спорангиями, а многогнездные могут функционировать и как гаметангии.

Виды рода эктокарпус (Ectocarpus ) имеют кустистое слоевище высотой 0,1-30 см. Оно состоит из тонких однорядных стелющихся и ветвящихся вертикальных нитей. Рост нитей интеркалярный или диффузный. Прикрепление к субстрату осуществляется ризоидами, которые у крупных экземпляров образуют своеобразную кору у основания ветвей. К вершине ветвей клетки сужаются и заканчиваются длинным бесцветным волоском.

Спорангии и гаметангии располагаются как боковые выросты ветвей. Внутри одногнездных спорангиев происходят мейоз и митоз с последующим формированием двухжгутиковых зооспор. Зооспоры вырастают в гаплоидные раздельнополые организмы с многогнездными гаметангиями. Гаметы изоморфные, но отличаются поведением: женская теряет подвижность и выделяет пахучее вещество, привлекающее мужские гаметы, одна из которых оплодотворяет ее. Зигота без периода покоя прорастает в диплоидный спорофит.

Порядок Сфацеляриальные (Sphacelariales ). Включает водоросли с жесткими кустистыми слоевищами высотой от нескольких миллиметров до 30 см; ветви цилиндрические. В отличие от других бурых водорослей у сфацеляриальных каждая ветвь оканчивается крупной клеткой, за счет деления которой водоросли имеют строго верхушечный рост. Для их слоевища характерно основание в виде корковидной пластинки из нескольких слоев клеток.

Вегетативное размножение происходит посредством столонов (нитей из нескольких рядов клеток, стелющихся по грунту) или специальных выводковых почек, отделяющихся от ветвей. У сфацеляриальных существует изоморфная смена форм развития.

Водоросли рода сфацелярия (Sphacelaria ) встречаются во всех морях. Слоевище у его представителей имеет вид кустика высотой до 4 см, состоящего из пластинчатой подошвы и отходящих от нее разветвленных нитей. Каждое разветвление нити на вершине несет крупную клетку, которая делится только в поперечном направлении и обусловливает нарастание таллома в длину. Отчленяющиеся таким образом клетки в дальнейшем делятся в продольном направлении, благодаря чему образуются узкие клетки, и таллом становится многослойным и внешне состоящим как бы из члеников.

Порядок Кутлериальные (Cutleriales ). Включает бурые водоросли, для которых характерно трихоталлическое строение слоевища за счет зоны роста, располагающейся в базальной части многоклеточных волосков, которые находятся на краях пластинчатого слоевища или на вершине ветвей кустистого таллома. Клетки зоны роста делятся, отчленяя клетки в сторону периферии и к слоевищу.

Порядок Диктиотальные (Dictyotales ). Объединяет виды, которые характеризуются апикальным ростом и обычно дихотомическим ветвлением в одной плоскости. Бесполое размножение посредством апланоспор (тетраспор). Половой процесс оогамный. Смена форм развития изоморфная. Большинство диктиотальных растут в тропических и субтропических морях. Довольно часто они встречаются в Черном (виды родов диктиота, дилофус и падина) и Японском (диктиота) морях.

Виды рода диктиота (Dictyota ) характеризуются вильчато- разветвленным слоевищем с плоскими, обычно расположенными в одной плоскости ветвями без продольного ребра. Таллом развивается из цилиндрического ризома, прикрепленного к субстрату ризоидами. Вершина каждой ветви оканчивается одной крупной клеткой . Внутри ветвей находится слой крупных бесцветных клеток, окруженный снаружи корой из одного слоя мелких интенсивно окрашенных клеток.

На спорофитах из поверхностных клеток развиваются сорусы одногнездных спорангиев, где образуется по четыре неподвижные тетраспоры. Тетраспоры прорастают в гаметофиты. Диктиота -- двудомная водоросль: на женских гаметофитах формируются сорусы одногнездных оогониев с одной яйцеклеткой в каждом. Антеридии образуются на мужских гаметофитах. Яйцеклетки выпадают из оогония и в воде оплодотворяются сперматозоидами. Зигота сразу же прорастает в новый организм - спорофит. Наиболее широко распространена диктиота дихотомическая (D . dichotoma ).

Род ламинария (Laminaria ) включает виды, таллом которых расчленен на листовидную пластинку, ствол и ризоиды. Листовидные пластины ровные или морщинистые, цельные или рассеченные. Ствол и ризоиды многолетние, листовидная пластина меняется ежегодно. На продольных разрезах с черешка и органов прикрепления выявляется их достаточно сложное анатомическое строение. Наружная часть черешка являет собой кору, состоящую из нескольких слоев клеток с хроматофорами; промежуточный слой представлен крупноклеточной запасающей тканью и, наконец, внутренний (сердцевина) - проводящей и механической. Проводящая система включает в себя трубчатые нити с воронковидными расширениями в местах клеточных перегородок. Эти перегородки имеют поры и называются ситовидными пластинами, а нити - ситовидными трубками. В толщину черешок растет за счет деления клеток коры, которое происходит периодически, вследствие чего на поперечном разрезе черешка хорошо заметны концентрические слои, напоминающие годичные кольца высших растений.

При размножении на поверхности листовидной пластинки из корковых клеток группами (сорусами) образуются одногнездные зооспорангии, в каждом из которых формируется от 16 до 128 двухжгутиковых зооспор. В благоприятных условиях зооспоры прорастают в микроскопически мелкие нитчатые заростки - мужские и женские гаметофиты.

Половой процесс у ламинарии оогамный. Созревшая яйцеклетка выходит из оогония и закрепляется на его верхнем конце. В таком положении происходит оплодотворение. Зигота без периода покоя прорастает в спорофит. Женский гаметофит обеспечивает не только формирование половых клеток, но и место прикрепления будущему спорофиту.

2.2.2 Класс Циклоспорофициевые (С yclosporophyceae )

Класс Циклоспорофициевые объединяет водоросли, у которых в цикле развития отсутствует чередование поколений. Их диплоидные талломы несут только органы полового размножения, развивающиеся в специальных округлых вместилищах - концептакулах, или скафидиях. Мейоз у циклоспоровых происходит перед образованием гамет. Бесполое размножение спорами отсутствует. Все циклоспорофициевые - крупные водоросли. Порядок Фукальиые (Fucales ). Объединяет водоросли, которые характеризуются кустистой формой слоевища с верхушечным ростом. Клетки осевых частей слоевища делятся слабо. Они вытянуты в длину и составляют сердцевину. Род фукус (Fucus ) включает виды с плоским ремневидным дихотомически разветвленным талломом длиной до 1 м. Вдоль лопастей таллома с гладкими или зазубренными краями проходит срединная жилка, переходящая в нижней части в черешок, который прикрепляется к субстрату базальным диском. У некоторых видов фукуса по бокам от средней жилки расположены воздушные пузыри в виде вздутий. Таллом нарастает за счет деятельности верхушечных клеток. При размножении концы таллома вздуваются, принимают светлую желто-оранжевую окраску и превращаются в рецептакулы, на которых образуются скафидии с отверстиями. Между парафизами на стенках женского скафидия формируются оогонии, мужского -антеридии. Зигота прорастает без периода покоя. Виды фукуса распространены у берегов холодных и умеренных морей Северного полушария, часто образуя большие заросли на литорали, что облегчает их сбор и использование. Виды фукуса применяют в качестве удобрений, корма для скота, производства кормовой муки, альгинатов и других химических веществ. В морях России встречается 5 видов этого рода. Наиболее известны Ф. пузырчатый (F . vesiculosus ) и Ф. двусторонний (F . distichus ).

2.3 Отдел Красные водоросли, или Багрянки (RHODOPHYTA)

Представители отдела в подавляющем большинстве - многоклеточные организмы сложного морфологического и анатомического строения, и только немногие, наиболее примитивные, имеют одноклеточное или колониальное слоевище коккоидной структуры. Многие багрянки - крупные водоросли, достигающие в длину от нескольких сантиметров до двух метров, но среди них немало и микроскопических форм.

По форме красные водоросли бывают в виде нитей, кустиков, пластинок, пузырей, корок, кораллов и т. д. Большого разнообразия достигают пластинчатые формы. Встречаются пластины цельные и сложно рассеченные, с дополнительными выростами по краю и на поверхности. Некоторые багрянки сильно кальцинированы и напоминают окаменелости.

При всем многообразии внешней формы красным водорослям свойствен единый план строения слоевища - в его основе у всех многоклеточных багрянок лежит гетеротрихальная структура.

Ветви красных водорослей делятся на две категории. Одни - основные длинные ветви, которые растут в длину в течение всего периода роста растения, так называемые ветви неограниченного роста. Другие растут только до определенного предела и всегда остаются более или менее короткими - это ветви ограниченного роста. Кроме того, у них есть и специализированные ветви, выполняющие роль усиков, или ризоидов, служащих для дополнительного прикрепления либо сцепления друг с другом. Паренхиматозный тип организации фактически отсутствует. Единственный пример такого слоевища -- представитель класса Бангиевые (порфира). У большинства же багрянковых слоевища псевдопаренхиматозного типа (за счет переплетения ветвей одной оси - одноосевое строение или многих - многоосевое). Увеличение размеров слоевищ у примитивных форм осуществляется за счет диффузного деления клеток, у более организованных -в результате деления верхушечных клеток, а у ряда видов - за счет верхушечной или краевой меристемы. Органами прикрепления к субстрату служат ризоиды, присоски, подошвы или стелющиеся ризоидальные пластины.

Клетки красных водорослей покрыты оболочкой, в которой различимы внутренний, целлюлозный, и наружный, пектиновый, ослизняющийся слой. Получаемый из последнего агар-агар содержит кроме пектина сахара и белки. Оболочка может быть пропитана известью, солями магния или железа. Цитоплазма отличается повышенной вязкостью, плотно прилегает к стенкам, чувствительна к изменению солености среды. У высокоорганизованных водорослей клетки многоядерные, у менее организованных - одноядерные.

Форма хроматофоров зависит от интенсивности освещения, размеров и возраста клеток. Однако чем выше организация водоросли, тем больше в ее клетках хроматофоров и тем постояннее их форма (преимущественно линзовидная). Пиреноиды у многих видов отсутствуют. Как и у других водорослей, окраска пластид и всего тела красной водоросли обусловлена сочетанием нескольких пигментов: хлорофиллов а и d, фикобилинов (фикоцианин, фикоэритрин, аллофикоцианин) и каротиноидов. Окраска таллома варьирует от малиново-красной (преобладание фикоэритрина) до голубовато-стальной (при избытке фикоцианина). Способы размножения красных водорослей весьма многообразны. Вегетативное размножение свойственно лишь примитивным. Оно осуществляется за счет образования дополнительных побегов, отрастания нового таллома от подошвы старого, отмершего, а также путем деления клеток. Оторванные участки талломов погибают. Бесполое размножение осуществляется моно-, би-, тетра- и полиспорами, образовавшимися в спорангиях. Тетраспоры формируются на диплоидных бесполых растениях - спорофитах (тетраспорофитах). В тетраспорангиях перед образованием тетраспор происходит мейоз.

Половой процесс оогамный. Карпогон обычно состоит из расширенной базальной части - брюшка (с ядром внутри) и трубчатого выроста - трихогины, принимающей спермации. Сперматангии - небольшие бесцветные клетки, содержимое которых освобождается в виде мелких, голых, лишенных жгутиков мужских гамет - спермациев.

Оплодотворение яйцеклетки осуществляется за счет перемещения спермация по трихогине в карпогон. После оплодотворения базальная часть карпогона отделяется перегородкой от трихогины, которая отмирает, и претерпевает дальнейшее развитие, приводящее к образованию карпоспор. Детали этого развития имеют важное значение при классификации багрянок. У одних красных водорослей содержимое зиготы делится с образованием неподвижных голых спор - карпоспор, у других из оплодотворенного карпогона образуется система специальных нитей - гонимобласты, клетки которых превращаются в карпоспорангии, производящие по одной карпоспоре. У большинства багрянок развитие карпоспор проходит с участием ауксилярных клеток. В таких случаях гонимобласт развивается не из брюшка карпогона, а из ауксилярной клетки. Если же ауксилярные клетки удалены от карпогона, из его брюшка после оплодотворения вырастают соединительные (ообластемные) нити; клетки их диплоидны. Ообластемные нити подрастают к ауксилярным клеткам и в точке их соприкосновения оболочки растворяются, после чего происходит плазмогамия, в результате развивается гонимобласт с карпоспорами - карпоспорофит. Следовательно, ауксилярные клетки выполняют вспомогательную функцию - стимулируют деление ядра клетки соединительной нити и поставляют дополнительное питание. У наиболее высокоорганизованных красных водорослей (флоридеефициевые) ауксилярные клетки развиваются после оплодотворения карпогона в непосредственной от него близости. Ообластемные нити у этих водорослей не образуются. Ауксилярная клетка, находясь рядом с брюшком карпогона, сливается с ним и образует прокарпий.

Циклы развития красных водорослей разнообразны. У одних представителей флоридеефициевых происходит смена трех форм развития: гаплоидный гаметофит, диплоидные карпо- и тетраспорофит. В этом случае зигота делится без редукции числа хромосом, формируя спорофит, на котором в результате мейоза образуются тетраспоры, дающие начало гаметофитам. Таким образом, имеются две свободноживущие формы одного и того же растения - тетраспорофит и гаметофит. У других водорослей (с гетероморфной сменой форм развития) часто бывает слабо развит и даже редуцирован тетра- и карпоспорофит, иногда редуцирован гаметофит (он формируется на спорофите).

...

Подобные документы

    Изучение видов и особенностей водорослей - примитивных организмов, у которых нет сложных органов, тканей и сосудов. Обзор основных физиологических процессов водорослей: рост, размножение, питание. Классификация и эволюция почвенных и водных водорослей.

    реферат , добавлен 07.06.2010

    Биологическая характеристика водорослей, их анатомическое строение. Размножение одноклеточной водоросли. Направления развития прикладной альгологии. Происхождение и эволюция водорослей, их экологические группы. Водоросли водных местообитаний, снега, льда.

    презентация , добавлен 25.11.2011

    Водоросли как представители фотоавтотрофных организмов нашей планеты, их происхождение и этапы развития. Способы и условия питания водорослей. Воспроизведение себе подобных у водорослей посредством вегетативного, бесполого и полового размножения.

    реферат , добавлен 18.03.2014

    Общая характеристика зеленых водорослей – группы низших растений. Место обитания морских зеленых водорослей. Их размножение, строение и способы питания, химический состав. Описание наиболее распространенных видов морских водорослей Японского моря.

    реферат , добавлен 16.02.2012

    Разделение водорослей на систематические группы высшего ранга, его совпадение с характером окраски и чертами строения. Клеточные оболочки водорослей. Бесполое и половое размножение водорослей. Черты сходства и различия желто-зеленых и зеленых водорослей.

    реферат , добавлен 09.06.2011

    Отдел сине-зелёные водоросли (Cyanophyta). Классы и виды водорослей. Строение клетки. Протопласт. Составные части протопласта. Плазмодесмы. Псевдовакуоли. Устойчивость сине-зеленых водорослей к воздействию продолжительного затемнения. Размножение.

    лекция , добавлен 01.06.2008

    Способы питания и строение клетки водорослей. Основные типы морфологической структуры их тела. Сравнительный анализ видового разнообразия различных видов водорослей в экотопах. Размножение, циклы развития и распространенность растений в водоемах.

    курсовая работа , добавлен 05.12.2014

    Способы питания и основные типы морфологической структуры тела водорослей. Строение их клетки, размножение и циклы развития. Сравнительный анализ видового разнообразия различных видов водорослей в экотопах. Сбор материала и гербаризация растений.

    курсовая работа , добавлен 11.12.2014

    Трофическая цепь экосистемы водоема. Классификация водорослей, их распределение в зависимости от глубины, распространение и роль в биогеоценозах. Использование водорослей человеком. Вегетативное, бесполое, половое размножение. Группы почвенных водорослей.

    презентация , добавлен 19.02.2013

    Почвенные водоросли как участники процессов почвообразования. Изучение и характеристика качественного состава водорослей почв отдела Cyanophyta. Строение и размножение синезелёных водорослей. Сравнение качественного и количественного состава Cyanophyta.