Подготовьте сообщение о применении радиоизотопов. Изотопы. Применение изотопов. Классификация радионуклидов, используемых в ядерной медицине

Содержание статьи

ИЗОТОПЫ –разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди , который образовал его из двух греческих слов: isos – одинаковый и topos – место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов. Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопами называются поэтому разновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы «снаружи», но различны «внутри».

В 1932 был открыт нейтрончастица, не имеющая заряда, с массой, близкой к массе ядра атома водорода – протона, и создана протонно-нейтронная модель ядра. В результате в науке установилось окончательное современное определение понятия изотопов: изотопы – это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Каждый изотоп принято обозначать набором символов , где X – символ химического элемента, Z – заряд ядра атома (число протонов), А – массовое число изотопа (общее число нуклонов – протонов и нейтронов в ядре, A = Z + N). Поскольку заряд ядра оказывается однозначно связанным с символом химического элемента, часто для сокращения используется просто обозначение A X.

Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2 H и 3 H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1 H называют иногда протием).

В природе встречаются как стабильные изотопы, так и нестабильные – радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам так называемого радиоактивного распада). Сейчас известно около 270 стабильных изотопов, причем стабильные изотопы встречаются только у элементов с атомным номером Z Ј 83. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше, Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов – 10 обнаружено у олова, у железа, например, их – 4, у ртути – 7.

Открытие изотопов, историческая справка.

В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д.И.Менделеевым была открыт периодический закон химических элементов. Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемой на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик – сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные масс, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным.

Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада:радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного. В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце – последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.

Независимое подтверждение существования стабильных изотопов химических элементов было затем получено в экспериментах Дж. Дж. Томсона и Астона в 1912–1920 с пучками положительно заряженных частиц (или так называемых каналовых лучей) , выходящих из разрядной трубки.

В 1919 Астон сконструировал прибор, названный масс-спектрографом (или масс-спектрометром). В качестве источника ионов по-прежнему использовалась разрядная трубка, однако Астон нашел способ, при котором последовательное отклонение пучка частиц в электрическом и магнитном полях приводило к фокусировке частиц с одинаковым значением отношения заряда к массе (независимо от их скорости) в одной и той же точке на экране. Наряду с Астоном масс-спектрометр несколько другой конструкции в те же годы был создан американцем Демпстером. В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей к 1935 году была составлена почти полная таблица изотопных составов всех известных к тому времени химических элементов.

Методы разделения изотопов.

Для изучения свойств изотопов и особенно для их применения в научных и прикладных целях требуется их получение в более или менее заметных количествах. В обычных масс-спектрометрах достигается практически полное разделение изотопов, однако количество их ничтожно мало. Поэтому усилия ученых и инженеров были направлены на поиски других возможных методов разделения изотопов. В первую очередь были освоены физико-химические методы разделения, основанные на различиях в таких свойствах изотопов одного итого же элемента, как скорости испарения, константы равновесия, скорости химических реакций и т.п. Наиболее эффективными среди них оказались методы ректификации и изотопного обмена, которые нашли широкое применение в промышленном производстве изотопов легких элементов: водорода, лития, бора, углерода, кислорода и азота.

Другую группу методов образуют так называемые молекулярно-кинетические методы: газовая диффузия, термодиффузия, масс-диффузия (диффузия в потоке пара), центрифугирование. Методы газовой диффузии, основанные на различной скорости диффузии изотопных компонентов в высокодисперсных пористых средах, были использованы в годы второй мировой войны при организации промышленного производства разделения изотопов урана в США в рамках так называемого Манхэттенского проекта по созданию атомной бомбы. Для получения необходимых количеств урана, обогащенного до 90% легким изотопом 235 U – главной «горючей» составляющей атомной бомбы, были построены заводы, занимавшие площади около четырех тысяч гектар. На создание атомного центра с заводами для получения обогащенного урана было ассигновано более 2-х млрд. долл. После войны в СССР были разработать и построены заводы по производству обогащенного урана для военных целей, также основанные на диффузионном методе разделения. В последние годы этот метод уступил место более эффективному и менее затратному методу центрифугирования. В этом методе эффект разделения изотопной смеси достигается за счет различного действия центробежных сил на компоненты изотопной смеси, заполняющей ротор центрифуги, который представляет собой тонкостенный и ограниченный сверху и снизу цилиндр, вращающийся с очень высокой скоростью в вакуумной камере. Сотни тысяч соединенных в каскады центрифуг, ротор каждой из которых совершает более тысячи оборотов в секунду, используются в настоящее время на современных разделительных производствах как в России, так и в других развитых странах мира. Центрифуги используются не только для получения обогащенного урана, необходимого для обеспечения работы ядерных реакторов атомных электростанций, но и для производства изотопов примерно тридцати химических элементов средней части периодической системы. Для разделения различных изотопов используются также установки электромагнитного разделения с мощными источниками ионов, в последние годы получили распространение также лазерные методы разделения.

Применение изотопов.

Разнообразные изотопы химических элементов находят широкое применение в научных исследованиях, в различных областях промышленности и сельского хозяйства, в ядерной энергетике, современной биологии и медицине, в исследованиях окружающей среды и других областях. В научных исследованиях (например, в химическом анализе) требуются, как правило, небольшие количества редких изотопов различных элементов, исчисляемые граммами и даже миллиграммами в год. Вместе с тем, для ряда изотопов, широко используемых в ядерной энергетике, медицине и других отраслях, потребность в их производстве может составлять многие килограммы и даже тонны. Так, в связи с использованием тяжелой воды D 2 O в ядерных реакторах ее общемировое производство к началу 1990-х прошлого века составляло около 5000 т в год. Входящий в состав тяжелой воды изотоп водорода дейтерий, концентрация которого в природной смеси водорода составляет всего 0,015%, наряду с тритием станет в будущем, по мнению ученых, основным компонентом топлива энергетических термоядерных реакторов, работающих на основе реакций ядерного синтеза. В этом случае потребность в производстве изотопов водорода окажется огромной.

В научных исследованиях стабильные и радиоактивные изотопы широко применяются в качестве изотопных индикаторов (меток) при изучении самых различных процессов, происходящих в природе.

В сельском хозяйстве изотопы («меченые» атомы) применяются, например, для изучения процессов фотосинтеза, усвояемости удобрений и для определения эффективности использования растениями азота, фосфора, калия, микроэлементов и др. веществ.

Изотопные технологии находят широкое применение в медицине. Так в США, согласно статистическим данным, проводится более 36 тыс. медицинских процедур в день и около 100 млн. лабораторных тестов с использованием изотопов. Наиболее распространены процедуры, связанные с компьютерной томографией. Изотоп углерода C 13 , обогащенный до 99% (природное содержание около 1%), активно используется в так называемом «диагностическом контроле дыхания». Суть теста очень проста. Обогащенный изотоп вводится в пищу пациента и после участия в процессе обмена веществ в различных органах тела выделяется в виде выдыхаемого пациентом углекислого газа СО 2 , который собирается и анализируется с помощью спектрометра. Различие в скоростях процессов, связанных с выделением различных количеств углекислого газа, помеченных изотопом С 13 , позволяют судить о состоянии различных органов пациента. В США число пациентов, которые будут проходить этот тест, оценивается в 5 млн. человек в год. Сейчас для производства высоко обогащенного изотопа С 13 в промышленных масштабах используются лазерные методы разделения.

Владимир Жданов

Применение радиоактивных изотопов в промышленности, науке и сельском хозяйстве (по данным печати) // Атомная энергия. Том 2, вып. 1. - 1957. - С. 85-88.

ПРИМЕНЕНИЕ РАДИОАКТИВНЫХ ИЗОТОПОВ В ПРОМЫШЛЕННОСТИ, НАУКЕ И СЕЛЬСКОМ ХОЗЯЙСТВЕ

(ПО ДАННЫМ ПЕЧАТИ)

Черная металлургия

На Сталинском металлургическом заводе при помощи радиокобальта, заключенного в небольшом контейнере, производили просвечивание сварных швов кожуха доменной печи непосредственно в процессе ее монтажа, т. е. в условиях полной невозможности рентгеносъемки. Применяя подобные контейнеры, дефектоскописты обнаруживают внутренние дефекты в стенках паровых котлов, труб газопроводов и т. д.

Продолжительность плавки в мартеновских печах и очищение стали от серы и фосфора на ранней стадии плавки во многом зависят от порядка завалки и количества твердых материалов. С помощью радиоизотопов на ряде заводов «метят» шихтовые материалы-известь или руду-и по измерениям радиоактивности проб металла или шлака определяют скорость формирования активного шлака. Таким способом выявляется зависимость скорости растворения

известняка и руды от технологических факторов. Подобным же образом определяют скорость плавления скрапа. Для этого «метят» металлическую часть шихты. Такие исследования в настоящее время проводятся на заводах «Азовсталь», Сталинском, Макеевском и на Магнитогорском и Кузнецком комбинатах.

После выпуска стали на мартеновской печи далеко не всегда можно оценить состояние наварки подины путем обычного осмотра.Между тем необнаруженный дефект может привести к серьезной аварии в последующих плавках. Для предупреждения этого служат радиоизотопы. На заводе «Азов сталь» радиофосфор в магнезитовых ампулах закладывали в различных местах подины. Появление радиоактивности в пробах шлака, отбиравшихся по ходу плавок, указывало на разрушение наварки.

В области аналитической химии применительно к задачам металлургии наметилось два направления исследований с помощью радиоактивных изотопов. Первое-это проверка и уточнение обычных методов химического анализа, например на фосфор. В этом случае при растворении навески стали или руды добавляют малое количество радиофосфора. По ходу анализа, на различных его стадиях, определяется интенсивность радиоактивного излучения проб раствора. При отсутствии потерь сумма радиоактивностей растворов, взятых на всех стадиях анализа, должна быть равной радиоактивности исходного раствора.

Второе направление-это разработка методов экспресс-анализа стали и шлака на какой-либо один, наиболее важный при данной технологии элемент путем введения радиоактивных изотопов непосредственно в сталеплавильные печи. Так, для технологии передела чугуна с высоким содержанием фосфора на заводе «Азовсталь» разработан метод экспрессного определения пятиокиси фосфора в шлаках. Установлено, что при расходе 0,04-0,05 мкюри радиоактивного изотопа фосфора на тонну металла достигается достаточная точность анализа при значительно меньшей его продолжительности по сравнению с анализом химическим. Этот метод позволяет контролировать шлаковый режим плавки и более точно сортировать шлак как удобрение. Подобный метод разработан и для определения фосфора в металле по ходу продувки передельного чугуна в конвертере. Он может с успехом применяться при отработке новой технологии металлургического передела и в исследованиях, где быстрота определения содержания фосфора в металле или шлаке влияет на ход процесса. (Промышленно-экономическая газета, 9 сент. 1956 г.)

В борьбе за технический прогресс Металлурги Украины все шире применяют меченые атомы радиоактивных элементов. С помощью радиоактивного кобальта без остановки домны определяется состояние ее стенок, выложенных из огнеупорного кирпича.

Пользуясь радиоактивными изотопами, мартеновцы устанавливают, с какой скоростью происходит кристаллизация стальных слитков, определяют содержание фосфора в мартеновском шлаке во много раз быстрее, чем прежде, наблюдают за процессом шлакообразования, фиксируют момент окончания процесса расплавления железной руды и известняка во время плавки.

Пользуясь мечеными атомами, металлурги определяют содержание в руде кремнезема в несколько раз быстрее, чем химическим методом. Широко применяются радиоактивные изотопы для определения мощности и характера залегания пластов железной руды и для управления рядом производственных процессов на дробильно-сортировочных и обогатительных фабриках. (Правда Украины, 4 авг. 1956 г.)

#На Запорожском заводе «Днепроспецсталь» вступила в строй лаборатория физических методов исследования, оборудованная новейшей аппаратурой. В этой лаборатории проводятся исследования процесса выплавки электростали радиоактивными изотопами. В частности, с помощью радиоактивного кальция изучается причина загрязнения шарикоподшипниковой стали печным шлаком. (Правда, 21 сент. 1956 г.)

Машиностроение

Исследования, проведенные в Научно-исследовательском институте HAT И, показывают, что, только применяя радиоактивные изотопы, можно было установить влияние смазки, мощности двигателя, числа оборотов коленчатого вала, запыленности воздуха, перерыва в работе (испытания) на скорость износа двигателя, определить перенос металла с одной трущейся поверхности на другую. Установлено, например, что уменьшение нагрузки не приводит к резкому сокращению скорости изнашивания деталей.

С помощью радиоактивных изотопов можно измерять износ изделий с точностью до одной десятимиллионной грамма.

Опыты, проведенные в Институте машиностроения Академии наук СССР и в других организациях, дали интересные результаты. Выяснилось, что с помощью радиоактивных изотопов можно глубоко и точно изучать явления износа инструмента, не прекращая процесса резания. В частности, можно устанавливать зависимость износа от скорости подачи, глубины резания, времени, смазывающе-охла- ждающих жидкостей и обрабатываемого материала.

Можно также установить, как распределяются продукты износа резца при разных условиях резания, сколько их переходит в стружку, изделие и смазывающе-охлаждающую жидкость, сколько отделяется в виде пыли. Все это имеет большое значение при определении режимов резания. (Промышленно-экономическая газета, 26 октября 1956 г.)

Около пяти лет на заводе транспортного машиностроения существует лаборатория радиоактивных изотопов.

Среди вопросов, решаемых лабораторией, следует назвать определение кальция в шлаке по ходу плавки в кислой электродуговой печи, износа некоторых подшипниковых сплавов, идущих на тепловоз ТЭ-3. Проводятся исследования влияния на износ шестерен термической обработки, сорта смазки и чистоты поверхности, распределения легирующих элементов в стали в зависимости от скорости охлаждения и т. п. (Красное Знамя, г. Харьков, 7 окт. 1956 г.)

Нефтяная промышленность

В Арчединском нефтепромысловом управлении широко применяют радиокароттаж. Он вошел в обязательный комплекс измерительных работ, проводимых по скважинам. Радиоактивные изотопы используются при выявлении негерметичности эксплуатационных колонн. Так, с помощью изотопа кобальта была определена глубина нарушения герметичности колонн в скважинах № 39 и 27.

Посредством тех же изотопов были значительно ускорены работы по разведочной девонской скважине № 93. В ней выявился новый нефтеносный пласт. (Сталинградская правда, 19 авг. 1956 г.)

Сварка металлов

Применение радиоактивных изотопов в сварке в настоящее время идет по трем направлениям: в дефектоскопии сварных швов, в использовании изотопов в схемах автоматического регулирования

И контроля технологических процессов и, наконец, в изучении при помощи радиоактивных изотопов ряда металлургических особенностей сварки металлов.

Для дефектоскопии сварных швов широкое распространение получил радиоактивный изотоп кобальта-60 со сравнительно жестким гамма-излучением, а также изотопы европия-154, иридия-192, цезия-137 и туллия-170 с более мягким излучением.

В Институте электросварки имени Е. Патона Академии наук УССР разработан метод автоматического регулирования уровня металлической ванны при электрошлаковой сварке с применением радиоактивного изотопа кобальта-60. Разница в коэффициентах поглощения гамма-излучения шлака и металла позволила построить автоматический регулятор уровня ванны, то есть автоматизировать процесс варки металлов больших толщин. (Промышленно- экономическая газета, 10 окт. 1956 г.)

Приборная техника

Коллективом сотрудников Центральной научно-исследовательской лаборатории Госгортехнадзора СССР создан специальный прибор-разностенномер.

Вариант разностенномера «Р-3», представленный на Всесоюзной промышленной выставке, портативен, небольшого веса, просто управляется. Применяемые же сейчас в производстве способы проверки разностенности труб сложны, громоздки, неточны.

Большие перспективы открываются перед разностенномером в различных отраслях промышленности: в черной металлургии для быстрого, точного измерения стенок только что отлитых труб, при ремонте паровых котлов, труб водопровода, канализации.

Разностенномер был представлен на Женевской конференции по мирному использованию атомной энергии и получил там высокую оценку.

Сейчас прибор испытывается в производственных условиях на одном из Ленинградских судостроительных заводов. Вчера в адрес лаборатории пришла телеграмма из Ленинграда. «Испытания разностенномера проходят на стальных и медных трубах. Результаты хорошие».

Разностенномер-не единственный атомный прибор, изобретенный инженером Ю. Г. Кардашем. Его «гамма-пульпомер» можно было видеть на всех земснарядах при строительстве Куйбышевской, Сталинградской, Каховской и других гидроэлектростанций. Он определяет процентное содержание грунта в пульпе-смеси грунта и воды. Без него машинист земснаряда работает вслепую.

Сейчас сотрудники ЦНИЛ Госгортехнадзора работают над тем, чтобы использовать атомную энергию для обеспечения безопасных условий труда шахтеров. (Комсомольская правда, 10 окт. 1956 г.)

# Научно-исследовательский институт теплоэнергетических приборов НИИ Теплоприбор ведет научно-исследовательские и опытно-конструкторские работы по созданию различных автоматических приборов, основанных на применении радиоактивных изотопов.

За последнее время создан целый ряд новых приборов, часть из которых успешно прошла испытания и внедряется в производство.

Радиоактивный плотномер жидкости ПЖР-1 предназначен для автоматического измерения плотности любых жидкостей в диапазоне плотности от 0,1 до 2 граммов на кубический сантиметр. (Промышленно-экономическая газета, 14 окт. 1956 г.)

Пищевая промышленность

Всесоюзный научно-исследовательский институт консервной промышленности закончил расчеты установки для лучевой обработки пищевых продуктов. Установка предназначается для стерилизации пищевых продуктов, дозой облучения до 3-Ю 6 рентгена в течение 20-30 минут, а также дезинсекции, пастеризации, дегельминтизации дозами от 10 4 рентген до 10 6 рентген.

Вопросы непосредственного использования энергии ядерных процессов в химии активно разрабатываются коллективом Московского научно- исследовательского физико-химического института имени Л. Я. Карпова.

В настоящее время на химических заводах с помощью марганцовокислого калия производится окисление парафинов, в результате которого получается жирная кислота-исходное сырье для изготовления различных моющих средств.

Проведенные в институте исследования показали, что окислять парафины можно без катализатора, с помощью радиоактивных излучений. Получаемая в результате этого жирная кислота обладает более высокими качествами. Энергия ядерных процессов позволяет производить в данном случае более полное окисление.

Одним из исходных продуктов для изготовления пластмасс служит фенол, получаемый при окислении бензола с помощью катализатора. Обычно чтобы приготовить 1 кг фенола, требуется окислить 2 кг бензола. Лабораторные исследования в институте выявили возможность получения с помощью радиоактивных излучений из одного килограмма бензола одного килограмма фенола. Советские ученые достигли выхода вещества на затраченную энергию, в три раза большего, чем зарубежные ученые.

В сельском хозяйстве широко применяется гексахлоран. Чтобы изготовить этот продукт, производится хлорирование бензола. В результате этого процесса получается четыре изомера, из которых лишь один (^-изомер) обладает необходимыми качествами. Обычно наличие гамма-изомера составляет 12-15%. Использование радиоактивных излучений дало возможность увеличить содержание ^-изомера до 25%.

Установлено, что энергия атома способна воздействовать и на скорость процесса полимеризации.

Перспективна работа над синтезом ряда новых веществ. Ученые установили, что бензол при облучении в смеси с аммиаком дает прямо и непосредственно анилин. Работники института вносят значительный вклад в развитие радиационной химии. Среди них профессоры В. Веселовский и М. Проскурнин, кандидаты химических наук В. Карпов и А. Зимин, старшие научные сотрудники А. Балелко, В. Орехов и др. (Промышленно-экономическая газета, 4 нояб. 1956 г.)

Агротехника

Сотрудники лаборатории микробиологии и физиологии Научно-исследовательского института сельского хозяйства Юго-Востока СССР кандидаты наук А. Е. Фомин и Н. К. Астахова установили, что подкормка пшеницы и кукурузы органическим фосфором ускоряет их созревание. Это открытие имеет большое значение для Юго-Востока страны, где растение при более ранних сроках цветения может уйти от вредного действия засухи. Новый агротехнический прием будет также способствовать продвижению южных сортов на север.

Ученые института сельского хозяйства Юго- Востока СССР расширяют круг исследований с помощью метода меченых атомов. (Советская Россия, 16 сент. 1956 г.)

Всесоюзный научно-исследовательский институт зерна совместно с институтом биофизики Академии наук СССР разработал предварительный проект мощной установки для облучения зерна.

Установка предназначается для уничтожения насекомых, находящихся в зерне, с целью увеличения срока его хранения.

Проведены расчеты по выбору наиболее выгодных конфигураций облучателя, так как конфигурация облучателя в значительной мере влияет на производительность установки. В качестве источника -(-излучения предполагается использовать продукты деления, являющиеся отходами производства.

Установка сможет перерабатывать не менее 20 т зерна в час при дозе около 30 000 р. Предполагается, что установка будет транспортабельной.

Барцаева Вика, ученица 9 класса МОУ "Гимназия №20" г.Саранск

В работе представлен наглядный материал по теме "Практическое использование изотопов в медицине"

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Презентация по теме: «Применение радиоактивных изотопов в медицине»

Применение радиоактивных изотопов разнообразно и многообразно. Трудно представить все возможности ее использования. Человечество делает первые шаги в использовании атомной энергии в мирных целых, но уже сегодня понятно, что атомная энергия является мощным средством технического прогресса. Целью моей работы является исследование реального применения атомной энергии в медицине

Метод радиоактивных изотопов позволяет на практике использовать свойства радиоактивных элементов. Этот метод использует тот факт, что по химическим и многим физическим свойствам радиоактивный изотоп неотличим от устойчивых изотопов того же элемента. Метод радиоактивных изотопов нашел весьма широкое применение в медицине. Значительный вклад в разработку методов ранней диагностики заболеваний с помощью введения в организм радиоактивных изотопов внесли российские ученые. Так, Г. Е. Владимиров (1901- 1960), известный биохимик, одним из первых применил радиоактивные изотопы (меченые соединения) для изучения обменных процессов в нервной и мышечной тканях. Первые опыты по практическому применению данного метода были осуществлены биологами В. М. Клечковским и В. И. Спицыным. Радиоизотопные методы диагностики основаны на том, что в кровь, в дыхательные пути, пищеварительный тракт вводятся радиоактивные изотопы – вещества, обладающие свойством радиоактивного излучения (чаще всего это гамма-лучи). Данные изотопы находятся в смеси с веществами, которые накапливаются преимущественно в том или другом органе. Радиоактивные изотопы, таким образом, являются своего рода метками, по которым уже можно судить о наличии тех или иных препаратов в органе.

Со60 (кобальт) применяется для лечения злокачественных опухолей, расположенных как на поверхности тела, так и внутри организма. Для лечения опухолей, расположенных поверхностно (например, рак кожи), кобальт применяется в виде трубочек, которые прикладываются к опухоли, или в виде иголочек, которые вкалываются в нее. Трубочки и иголочки, содержащие радиокобальт, держатся в таком положении до тех пор, пока не наступит разрушение опухоли. При этом не должна сильно страдать здоровая ткань, окружающая опухоль. Если опухоль расположена в глубине тела (рак желудка или легкого), применяются специальные γ -установки, содержащие радиоактивный кобальт. Такая установка создает узкий, очень мощный пучок γ -лучей, который направляется на то место, где распола­гается опухоль. Облучение не вызывает никакой боли, больные не чувствуют его.

Камера радиографическая цифровая для флюорографических аппаратов КРЦ 01- "ПОНИ"

Маммограф современная маммографическая система, с низкой дозой облучения и высокой разрешающей способностью, которая обеспечивает высококачественное изображение молочной железы необходимое для точной диагностики

Цифровой флюорографический аппарат ФЦ-01 «Электрон» предназначен для проведения массового профилактического рентгенологического обследования населения в целях своевременного выявления туберкулеза, онкологических и других легочных заболеваний при малой лучевой нагрузке.

компьютерный томограф Компьютерная томография – метод послойного рентгенологического исследования органов и тканей. Она основана на компьютерной обработке множественных рентгеновских изображений поперечного слоя, выполненных под разными углами.

Брахитерапия - не радикальная, а практически амбулаторная операция, в ходе которой в пораженный орган мы вводим титановые зерна, содержащие изотоп. Этот радиоактивный нуклид убивает опухоль насмерть. В России пока только четыре клиники выполняют такую операцию, две из которых в Москве, одна в Обнинске и одна у нас, в Екатеринбурге, хотя страна нуждается в 300-400 центрах, где применяли бы брахитерапию.

В человеческих сердцах обнаружены следы атомных взрывов Самые глубокие следы атомных взрывов хранят сердца людей, рожденных в 50-е годы прошлого века

Ядерные испытания в атмосфере помогли доказать, что живой "насос", перекачивающий кровь, сам восстанавливает свои поврежденные ткани Еще несколько лет назад принято было считать, что нервные клетки не восстанавливаются. Мол, у человека их столько, сколько получено от рождения. И с возрастом больше не становится. Только меньше - ведь нервные клетки безвозвратно погибают. Выяснилось, что это не так. И новые нейроны способны появляться в процессе жизни. И про сердце думали, что оно не способно к регенерации. Но это стойкое медицинское заблуждение опроверг Ратан Бхардваж - Мы показали, что в сердце взрослого человека вырастают новые клетки, - заявляет ученый. Сделать открытие исследователю помогли ядерные испытания в атмосфере, которые проводились в 50-е годы прошлого века. Тогда они сильно изгадили окружающую срежу радиоактивным изотопом - углеродом-14 . Но его уровень упал, после того, как в 1963 году запретили взрывать атомные бомбы в атмосфере.

Радиоактивные изотопы помогли установить время, когда у людей появлялись новые сердечные клетки Сердечные клетки людей, заставших наземные ядерные взрывы, "всосали" изотоп в повышенной концентрации. Его-то ученые и использовали для так называемого радиоуглеродного датирования живых тканей. Углерод-14 позволил определить возраст клеток. И оказалось, что они - клетки сердца - появлялись в разное время. То есть, наряду со старыми рождались и новые. По оценкам Бхардважа и его коллег, сердце 25-летнего человека способно изготавливать новорожденные клетки в количестве до 1 процента в год от массы органа. К 75 годам производительность "фабрики" падает до 0,45 процента.

Опасности и осложнения радиоизотопных исследований. Во время исследования больной получает определенную дозу радиации. Эта доза не превышает тех уровней радиоактивного излучения, которым подвергается организм при рентгенографии грудной клетки, компьютерной томографии. Следует также знать, что применяемые в исследованиях радиоактивные изотопы быстро выводятся из организма и не оказывают, таким образом, повреждающего действия. В ряде государств изготавливаются радиофармацевтические препараты, используе6мые для протонно-ионной и бор-нейтроннозахватной терапии и ранней диагностики онкологических и других заболеваний, а также в качестве анестетиков. Итак, радиоактивные изотопы нашли своё применение в медицине вообще и в хирургии в частности. Сегодня достаточно широко радиоактивные изотопы используются как для многообразных методов диагностики (для обнаружения, распознавания и локализации внутренних злокачественных образований), так и для терапии болезней человека. РДИ имеют свои достоинства, среди которых следует выделить увеличение экономической и экологической безопасности, снижение стоимости и улучшение эксплуатационных характеристик. Метод использования радиоактивных изотопов для диагностики и лечения в хирургии постоянно совершенствуется и развивается, о чем свидетельствует динамика его использования в крупных городах России, в целом в Российской Федерации и развитых странах.

Литература И.Аладьев «Атомная энергия и ее применение в мирных целях» С.Фейнберг «Исследовательские реакторы» В.Дуженков « Использование радиации в химической промышленности» Г.Иордан «Использование излучений радиоизотопов в измерительной технике» М.Розанов «Применение радиоизотопов в медицине»

Подготовила: ученица 9 В класса МОУ «Гимназия №20» г. Саранск Барцаева Виктория

Радиоактивные изотопы и ионизирующие излучения для диагностики и лечения широко применяются в медицине, а в ветеринарии для практического использования они не нашли широкого применения.

Радиоактивные изотопы, используемые для диагностики должны отвечать следующим требованиям: иметь короткий период полураспада, низкую радиотоксичность, возможность для регистрации их излучений, а также накапливаться в тканях обследуемого органа. Например, для диагностики патологических состояний костной ткани используют 67 Ga (галий), для диагностики первичных и вторичных опухолей скелета – изотопы стронция (85 Sr и 87 Sr), для диагностики печени – 99 Tc и 113 In (технеций и индий) для диагностики почек – 131 I (йода) и щитовидной железы 24 Na (натрия) и 131 I (йода), селезенки – 53 Fe (железа) и 52 Cr (хрома).

Радиоактивные изотопы используют для определения функционального состояния сердечно-сосудистой системы по скорости кровотока и объему циркулирующей крови. Метод основан на регистрации перемещения меченной гамма-радиоактивной меткой крови в сердце и в разных участках сосудов. Радиоизотопные методы позволяют определять минутный объем крови в сердце и объем крови, циркулирующей в сосудах, в тканях органов. С помощью радиоактивных газов, из которых чаще используется радиоизотоп ксенона (133 Хе), определяют функциональное состояние внешнего дыхания – вентиляции, диффузии в легочном кровотоке.

Изотопный метод очень эффективен при исследовании водного обмена, как в норме, так и при нарушении обмена веществ, инфекционной и неинфекционной патологии. Метод состоит в том, что в состав молекулы водорода (1 Н) вводят его радиоактивный изотоп тритий (3 Н). Меченую воду в виде инъекций вводят в кровь, с которой тритий быстро разносится по организму и проникает во внеклеточное пространство и клетки, где вступает в реакции обмена с биохимическими молекулами. При этом, прослеживая путь и скорость обменных реакций трития, определяют динамику водного обмена.

При некоторых заболеваниях крови возникает необходимость исследования функций селезенки, для этих целей используют радиоизотоп железа (59 Fe). Радиоактивное железо вводят в кровь в виде метки в составе эритроцитов или плазмы, из которых оно поглощается селезенкой, пропорционально функциональному нарушению органа. Концентрация 59 Fe в селезенке определяется путем регистрации гамма-излучения, сопровождающего радиоактивным распадом ядер 59 Fe, с помощью гамма-щупа, приложенного к области селезенки.

Широкое применение в клинической практике получило сканирование исследуемых органов – печени, почек, селезенки, поджелудочной железы и т. д. При помощи этого метода изучают распределение радиоизотопа в исследуемом органе и функциональное состояние органа. Сканирование дает наглядное представление о месте расположения органа, о его размерах и форме. Диффузное распределение радиоактивного вещества позволяет обнаружить в органе участки интенсивного накопления («горячие» очаги) или пониженной концентрации изотопа («холодные» зоны).

Лечебное применение радиоизотопов и ионизирующих излучений основано на их биологическом действии. Известно, что наиболее радиочувствительны молодые, интенсивно делящиеся клетки, к которым также относятся раковые клетки, поэтому радиотерапия оказалась эффективна на злокачественных новообразованиях и болезнях кроветворных органов. В зависимости от локализации опухоли осуществляют внешнее гамма-облучение с помощью гамма-терапевтических установок; накладывают на кожу аппликаторы с радиоактивным калифорнием (252 Cf) для контактного действия; вводят непосредственно в опухоль коллоидные растворы радиоактивных препаратов или полые иглы, заполненные радиоизотопами; вводят внутривенно короткоживущие радионуклиды, которые избирательно накапливаются в опухолевых тканях.

Задачей лучевой терапии рака является подавление способности опухолевых клеток к неограниченному размножению . При небольшом размере опухолевого очага эта задача решается путем облучения опухоли дозой, способной очень быстро подавить клоногенную активность всех клеток опухоли. Однако в большинстве случаев при лучевой терапии в зоне облучения неизбежно оказываются не только опухоль, но и окружающие ее здоровые ткани. Часть нормальных тканей подвергается облучению специально с целью подавления роста опухолевых клеток, которые проникают в нормальные ткани.

В лучевой терапии необходимо совершенствование аппаратуры и источников облучения, способных обеспечивать лучшее пространственное распределение дозы между опухолью и окружающими ее тканями. На начальном этапе развития лучевой терапии основной задачей являлось повышение энергии рентгеновского излучения , что позволяло перейти от лечения поверхностно расположенных новообразований к глубоко расположенным в тканях опухолям. Использование кобальтовых гамма-установок позволяет улучшить соотношение глубинной и поверхностной доз. При этом максимум поглощенной дозы распределятся не на поверхности опухоли, как при рентгеновском облучении, а на глубине 3–4 мм. Использование линейных ускорителей электронов позволяет проводить облучение опухоли пучком электронов высоких энергий. Наиболее совершенные установки в настоящее время снабжаются лепестковым коллиматором, который позволяет формировать поле облучения, соответствующее форме опухоли. Более точное пространственное распределение поглощенной дозы между опухолью и окружающими ее нормальными тканями получают используя тяжелые заряженные частицы, к которым относятся протоны, ионы гелия, ионы тяжелых элементов, а также π - -мезоны. Кроме технического прогресса лучевой терапии не менее важным является повышение биологической эффективности лечения, которое предполагает проведение исследований по изучению процессов, происходящих в различных тканях при облучении. При ограниченной распространенности опухолевого процесса эффективным методом лечения является облучение опухоли. Вместе с тем, только одна лучевая терапия опухолей менее эффективна. Излечение большей части больных достигается хирургическими, лекарственными и комбинированными методами в совмещении с лучевой терапией. Улучшение результативности лучевых методов лечения простым увеличением доз облучения вызывает резкое возрастание частоты и тяжести лучевых осложнений в нормальных тканях. Преодолеть этот процесс можно, во-первых, путем углубленного изучения процессов, происходящих в тканях в условиях фракционированного облучения, во-вторых, путем изучения факторов, влияющих на радиочувствительность клеток опухолей и нормальных тканей с учетом индивидуальных особенностей больных. Эти обстоятельства требуют разработки новых методов повышения эффективности лучевой терапии, в частности, за счет использования радиомодификаторов и новых режимов фракционирования дозы. Большое влияние на эффективность лучевой терапии оказывает исходная радиоустойчивость раковых клеток, которая значительно изменяется как среди опухолей различного происхождения, так и в пределах одной опухоли. К радиочувствительным новообразованиям принято относить лимфомы, миеломы, семиномы, опухоли головы и шеи. К опухолям с промежуточной радиочувствительностью относят опухоли молочной железы, рак легкого, рак мочевого пузыря. К наиболее радиоустойчивым опухолям относят опухоли нейрогенного происхождения, остеосаркомы, фибросаркомы, рак почки. Низкодифференцированные опухоли более радиочувствительны, чем высокодифференцированные. В настоящее время имеются данные о высокой изменчивости радиочувствительности клеточных линий, полученных из одной и той же опухоли. Причины широкой вариабельности радиочувствительности раковых клеток к облучению остаются невыясненными до настоящего времени.

Важной задачей раковой терапии является разработка методов селективного (избирательного) управления тканевой радио-чувствительности, направленных на повышение радио-чувствительности опухолевых клеток и увеличение радио-устойчивости клеток здоровых тканей. Фактором, значительно увеличивающим радиоустойчивость опухолевых клеток, является гипоксия , возникающая вследствие дисбаланса в скоростях размножения клеток и роста сосудистой сети, питающей эти клетки. Это было доказано на основании того, что радиоустойчивость облученных клеток значительно возрастает при дефиците кислорода или гипоксии, а также на основании того, что развитие гипоксии является логическим следствием неуправляемого роста злокачественных опухолей. Клетки опухоли растут быстрее, питающей их сосудистой сети, поэтому сосудистая сеть опухолевых клеток, по сравнению с сосудистой сетью нормальных клеток, физиологически неполноценна. Плотность капиллярной сети неравномерно распределена по объему опухоли. Делящиеся клетки, расположенные около сосудов, раздвигают капилляры, и на расстоянии 150-200 мкм от них возникают зоны хронической гипоксии, в которые не доходит кислород. Кроме этого неуправляемое деление клеток приводит к периодическому повышению внутриопухолевого давления, из-за которого происходит временное сдавливание отдельных капилляров и прекращение в них микроциркуляции крови, при этом напряжение кислорода (рО 2) может падать до нулевых значений, и поэтому наблюдается состояние острой гипоксии. В таких условиях часть наиболее радиочувствительных клеток опухоли погибает, а радиоустойчивые клетки остаются и продолжают деление. Эти клетки называются гипоксическими опухолевыми клетками .

Методы управления тканевой радиочувствительностью при лучевой терапии основаны на различиях в кровоснабжении и кислородных режимах, метаболизме и интенсивности деления клеток опухолей и нормальных тканей. Для повышения радиочувствительности гипоксических опухолевых клеток в качестве сенсибилизатора используется кислород . В 1950 г. английскими учеными был разработан метод оксибарорадиотерапии , при котором на время сеансов лучевой терапии больной помещается в барокамеру, в которой находится кислород под давлением в три атмосферы. В этом случае кислородом насыщается гемоглобин и значительно увеличивается напряжение кислорода, растворенного в плазме крови. Использование этого метода позволило значительно улучшить лечение нескольких видов опухолей, в первую очередь рака шейки матки и новообразований головы и шеи. В настоящее время используется другой метод насыщения клеток кислородом – дыхание карбогеном, смесью кислорода и 3–5 %-ного углекислого газа , которые усиливает легочную вентиляцию за счет стимулирования дыхательного центра. Улучшению лечебного эффекта способствует назначение больным никотинамида – препарата, расширяющего кровеносные сосуды. Большое внимание уделяется разработке химических соединений, обладающих электронакцепторными свойствами, имеющих, как и кислород, не спаренный электрон, благодаря которому обеспечивается высокая реакционная способность. В отличие от кислорода, электронакцепторные сенсибилизаторы не используются клеткой в процессе энергетического метаболизма и поэтому они более эффективны.

Кроме гипоксии в радиационной онкологии используют гипертермию , т. е. кратковременный, в пределах 1 часа, локальный нагрев отдельных участков тела (локальная гипертермия) или нагрев всего тела, за исключением головного мозга до температуры 40– 43,5 0 C (общая гипертермия). Такая температура вызывает гибель некоторой части клеток, которая увеличивается в условиях пониженного напряжения кислорода, характерного для гипоксических зон злокачественных новообразований. Гипертермия применяется для лечения только отдельных злокачественных и доброкачественных новообразований (главным образом аденомы простаты). Для достижения более высоких эффектов лечения гипертермию используют в сочетании с лучевой терапией и химиотерапией, при этом гипертермию проводят до или после облучения. Сеансы гипертермии проводят 2–3 раза в неделю, при этом чаще используется прогрев опухоли после сеанса облучения, чтобы обеспечить в опухоли более высокую температуру, чем в нормальных тканях. При высокой температуре в опухолевых клетках синтезируются особые белки (белки теплового шока), которые участвуют в радиационном восстановлении клеток, поэтому часть повреждений в облученных клетках опухоли восстанавливается, а повторное облучение вызывает гибель этих восстановленных клеток и вновь образующихся клеток. Установлено, что одним из факторов усиления эффекта облучения с помощью гипертермии является подавление репарационных способностей раковой клетки.

Экспериментально доказано, что при облучении клеток, нагретых до температуры 42 0 С, поражающий эффект зависит от рН клеточной среды, при этом наименьшая гибель клеток наблюдалась при рН = 7,6, а наибольшая – при рН = 7,0 и менее. Для повышения эффективности лечения опухоли, в организм вводят большое количество глюкозы, которую жадно поглощает опухоль и преобразует ее в молочную кислоту, поэтому в клетках опухоли рН снижается до 6 и 5,5. Введение в организм повышенного количества глюкозы также увеличивает в крови содержание сахара в 3–4 раза, поэтому значительно снижается рН и усиливается противоопухолевое действие гипертермии, которое проявляется в массовой гибели клеток.

При разработке методов облучения опухоли встает проблема противолучевой защиты нормальных тканей , поэтому необходимо разрабатывать методы, способствующие повышению радиоустойчивости нормальных тканей, что в свою очередь позволит увеличить дозы облучения опухолей и повысить эффективность лечения. В настоящее время доказано, что в условиях гипоксии лучевое поражение опухолевых клеток значительно усиливается по сравнению с облучением на воздухе. Это дает основание использовать для избирательной защиты нормальной ткани методы облучения опухолей в условиях газовой (кислородной) гипоксии. В настоящее время продолжается поиск химических радиопротекторов, которые бы оказывали избирательное защитное действие только для нормальных тканей и в тоже время не защищали клетки опухолей от поражения.

При лечении многих онкологических заболеваний используется комплексная терапия, т. е. совместное применение облучения и химиотерапевтических препаратов, которые оказывают радиомоди-фицирующее действие. Облучение используется для подавления роста основной опухоли, а лекарственная терапия – для борьбы с метастазами.

В лучевой терапии широко используются тяжелые ядерные частицы – протоны, тяжелые ионы, π-мезоны и нейтроны разных энергий . Пучки тяжелых заряженных частиц создаются на ускорителях, имеют малое боковое рассеяние, что позволяет формировать дозовые поля с четким контуром по границе опухоли. Все частицы имеют одинаковую энергию и соответственно одинаковую глубину проникновения в ткань, что позволяет меньше облучать нормальные ткани, находящиеся по ходу пучка за пределами опухоли. У тяжелых заряженных частиц линейные потери энергии увеличиваются в конце пробега, поэтому создаваемая ими физическая доза в тканях не уменьшается с увеличением глубины проникновения, как при облучении редко ионизирующими излучениями, а возрастает. Увеличение поглощенной в тканях дозы излучения в конце пробега носит название пика Брэгга. Расширить пик Брэгга до размера опухоли можно при использовании на пути пробега частиц так называемых гребенчатых фильтров. На рисунке 6 приведены результаты оценки глубинного распределения дозы, создаваемого разными видами излучения, при облучении опухоли диаметром 4 см, располагающейся в теле на глубине 8–12 см.

Рис. 6. Пространственное распределение поглощенной дозы излучений разных видов излучений

Если относительная доза облучения, равная единице, приходится на середину опухоли, т. е. 10 см от поверхности тела, тогда при гамма- и нейтронном облучении доза на входе пучка (т. е. в нормальных тканях) вдвое превышают дозу в центре опухоли. При этом облучение здоровых тканей происходит и после прохождения пучка излучений через злокачественную опухоль. Иная картина наблюдается при использовании тяжелых заряженных частиц (ускоренных протонов и π-мезонов), которые основную энергию передают непосредственно опухолям, а не нормальным тканям. Доза, поглощенная в опухоли, выше, чем доза, поглощенная в нормальных тканях, расположенных по ходу пучка, как до проникновения в опухоль, так и после выхода из опухоли.

Корпускулярную терапию (облучение ускоренными протонами, ионами гелия и водорода) используют при облучении опухолей, расположенных вблизи от критических органов. Например, если опухоль локализована рядом со спинным мозгом, тканями головного мозга, вблизи радиочувствительных органов малого таза, в глазном яблоке.

Нейтронная терапия оказалась наиболее эффективной при лечении нескольких видов медленно растущих опухолей (рака простаты, саркомы мягких тканей, рака слюнных желез). Для облучения используют быстрые нейтроны с энергией до 14 МэВ. В последние годы возрос интерес к нейтронзахватной терапии , для которой используются тепловые нейтроны с низкой энергией 0,25–10 кэВ, которые образуются в атомных реакторах и по отдельным каналам выводятся в расположенные рядом с реактором процедурные помещения. Для нейтронного захвата используются атомы бора-10 и гадолиния-157. При захвате нейтрона атомами бора-10 происходит его распад на атомы лития и альфа-частицы, пробег которых в тканях равен нескольким клеточным диаметрам, поэтому зона интенсивного воздействия излучения может ограничиваться только клетками, в которых будет высокое содержание бора. Захват нейтронов гадолинием-157 также приводит к распаду его ядер, который сопровождается гамма-излучением и образованием двух типов электронов – электорнов Оже и электронов конверсии. Электроны Оже имеют очень короткий пробег, поэтому, чтобы вызвать поражение клетки гадолиний должен находиться в самой клетке, однако гадолиний в клетку не проникает, поэтому основной поражающий эффект вызывают электроны конверсии, возникающие при распаде гадолиния в межклеточном пространстве. Для нейтронзахватной терапии необходимо обеспечить доставку бора и гадолиния непосредственно в опухолевые клетки или хотя бы в межклеточное пространство. Необходимым условием при этом является обеспечение поступления этих элементов только в опухолевые ткани исключая при этом возможность поступления их в клетки нормальных тканей. Для выполнения этого условия необходимо использование синтетических носителей бора и гадолиния.

Разные виды опухоли значительно различаются по скорости роста. Скорость опухолевого роста определяется не только длительностью клеточного цикла, но и долей постоянно погибающих и удаляемых из опухоли клеток. В нормальных тканях, оказавшихся в зоне облучения также имеются клетки в разных стадиях цикла, причем соотношение между делящимися и покоящимися клетками не одинаково в начале и в конце облучения. Глубина поражения клеток опухоли и нормальных тканей после однократного облучения определяется их исходной радиочувствительностью, а при фракционированном облучении – дополнительно и эффективностью восстановления клеток от сублетальных поражений. Если перерыв до второй фракции облучения составляет 6 и более часов, тогда возможна практически полная репарация повреждений данного вида клеток, поэтому эти клетки не погибают. Одновременно с восстановлением у некоторых видов клеток регистрируется гибель. Например, клетки лимфоидного происхождения начинают погибать уже в первые сутки после облучения. Гибель летально пораженных клеток другого происхождения (т. е. нелимфоидного), как опухолевых, так и здоровых тканей, растягивается на несколько дней и происходит, как во время очередного деления, так и спустя несколько часов после него. Клетки опухолей, находящиеся вне цикла, также как и покоящиеся клетки нормальных тканей, в течение определенного времени могут не проявлять признаков летального поражения. Непосредственно после облучения большинство опухолей продолжает рост даже после облучения высокой дозой, которая впоследствии приведет к гибели значительной части клеток. Это происходит по причине деления клеток, сохранивших жизнеспособность, а также по причине нескольких делений летально пораженных клеток.

Сразу после лучевого воздействия в опухоли возрастает доля относительно радиоустойчивых клеток, находящихся в момент воздействия в состоянии гипоксии и клеток, находящихся в наиболее радиоустойчивых фазах клеточного цикла. При получении стандартного курса лучевой терапии, когда фракции проводятся с интервалом 24 часа, к моменту очередного облучения клетки проходят следующие процессы. С одной стороны, благодаря восстановлению от потенциально летальных и сублетальных поражений, радиоустойчивость опухолевых и нормальных клеток повышается. С другой стороны, одновременное возобновление деления и переход клеток из наиболее радиоустойчивых стадий в более радиочувствительные, приводит к повышению радиочувстви-тельности. Эти процессы воспроизводятся после каждой фракции облучения, поэтому через некоторое время после начала курса облучения количество погибших клеток начинает превышать количество вновь образовавшихся клеток, поэтому опухоль уменьшается в объеме. По мере продолжения курса облучения наступает момент ускоренного деления клеток опухолевой и нормальной тканей, которое приводит к репопуляции этих тканей (или к самовосстановлению). Репопуляция осуществляется благодаря сохранившимся опухолевым клеткам, способным к делению, которые при этом получают достаточное количество питательных веществ и кислорода, поэтому рост опухоли возобновляется. При фракционированном облучении необходимо знать скорость репопуляции опухолей, потому что при фракционировании дозы незначительное увеличение интервала между фракциями может привести к возникновению динамического равновесия, при котором степень подавления роста опухоли на единицу дозы будет падать.

В настоящее время наиболее широко применяют курс лечебной терапии с ежедневным облучением опухоли дозой 2 Гр, при этом общая суммарная доза составляет 60 Гр, а общая длительность курса – 6 недель. Для повышения эффективности лучевой терапии используют новые режимы фракционирования дозы – мультифракционирование – ежедневное проведение 2–3-х фракций вместо одной, что способствует снижению тяжести отдаленных лучевых поражений. При лучевой терапии большинства злокачественных опухолей пока не возможно 100 %-ное излечение онкобольных.

ЗАКЛЮЧЕНИЕ

Таким образом, знание закономерностей биологического действия ионизирующего излучения на уровне клеток, микроорганизмов, а также организма растений и животных, позволяет широко применять ионизирующие излучения в различных радиационно-биологических технологиях.

Литература

1. Г р о д з и н с к и й Д. М. Радиобиология растений / Д.М. Гродзинский.Киев: Навукова думка, 1989. 384 с.

2.Г у л я е в, Г. В. Генетика. – 3-е изд., перераб. и доп. / Г.В. Гуляев. М.: Колос, 1984. 351 с.

3. И в а н о в с к и й, Ю. А. Эффект радиационной стимуляции при действии больших и малых доз ионизирующего облучения / Автореферат диссертации на соискание ученой степени доктора биологических наук. Владивосток. 2006 г. - 46 С.

4. К а у ш а н с к и й, Д. А., К у з и н, А.М. Радиационно-биологическая технология / Д.А. Каушанский, А.М. Кузин. М.: Энергоатомиздат. 1984. 152 С.

5. К у з и н, А. М., Каушанский, Д.А. Прикладная радиобиология: (теоретические и технические основы) / А.М. Кузин, Д.А. Каушанский. М.: Энергоатомиздат. 1981. 224 с.

6. Р а д и о б и о л о г и я / А.Д. Белов, В.А. Киршин, Н.П. Лысенко, В.В. Пак и др. /Под Ред. Белова. М.:Колос,1999. 384С.

7.С а м с о н о в а, Н. Е. Ионизирующая радиация и сельскохозяйственное производство. 2007г.

8. Я р м о н е н к о, С. П. Радиобиология человека и животных: Учеб. Пособие / С.П.Ярмоненко. – М.: Высш. Шк., 2004.– 549 с.

9.Использование радионуклидов и ионизирующих излучений в защите растений (сборник научных трудов) / Алма-Ата, Восточное отделение ВАСХНИЛ,1980. 132 с.

10. А н д р е е в, С. В., Е в л а х о в а, А. А. Радиоактивные изотопы в защите растений / С.В. Андреев, А.А. Евлахова, .Ленинград, «Колос», 1980. 71 с.

11.Радиационная обработка пищевых продуктов / под редакцией В. И. Рогачева. Москва, Атомиздат,1971. 241 с.

П Р И Л О Ж Е Н И Е


Введение………………………………………………………………………………………..3

1.РАДИАЦИОННО-БИОЛОГИЧЕСКАЯ ТЕХНОЛОГИЯ В СЕЛЬСКОМ ХОЗЯЙСТВЕ

1.1. Области применения радиационно-биологической технологии……………………….4

1.2. Радиационный мутагенез как основа получения новых сортов сельскохозяйственных растений, микроорганизмов…………………………………………………………………..6

1.3.Использование стимуляционного действия ионизирующего излучения в отраслях сельского хозяйства…………………………………………………………………………..12

1.4.Использование ионизирующих излучений при производстве кормов и кормовых добавок для сельскохозяйственных животных……………………………………………..19

1.5.Применение ионизирующего излучения для радиационной стерилизации………….20 ветеринарных принадлежностей, бактерийных препаратов и для получения радиовакцин

1.6.Радиационная стерилизация животных и насекомых-вредителей……………………27

1.7. Использование радиоактивных изотопов в качестве индикаторов

в животноводстве……………………………………………………………………………..29

1.8. Использование радиоактивных изотопов в качестве индикаторов

в растениеводстве…………………………………………………………………………….31

1.9. Радиационное обеззараживание навоза и навозных стоков животноводческих ферм. Дезинфекция сырья животного происхождения при инфекционных заболеваниях……..31

2. РАДИАЦИОННО-БИОЛОГИЧЕСКАЯ ТЕХНОЛОГИЯ В ПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ………………………………………………………………………32

2.1. Использование ионизирующих излучений в пищевой промышленности для продления сроков хранения продукции животноводства, растениеводства, овощеводства и рыбоводства…………………………………………………………………………………32

2.2..Изменение качества сырья с целью улучшения его технологической обработки…..39

2.3.Ускорение медленно идущих процессов в пищевой технологии…………………….41

3. РАДИАЦИОННО-БИОЛОГИЧЕСКАЯ ТЕХНОЛОГИЯ В МЕДИЦИНЕ……………..42

3.1.Использование ионизирующих излучений в медицинской промышленности, для диагностики и лечения болезней человека и животных…………………………………...42

3.2.Использование радиоактивных изотопов и ионизирующих излучений для диагностики и лечения болезней…………………………………………………………….44

ЗАКЛЮЧЕНИЕ……………………………………………………………………………….54

Приложения…………………………………………………………………………………..56

Радиационная стерилизация питательных сред для культивирования микробов и вирусов способствует повышению питательных свойств для некоторых видов микроорганизмов. Например, для азотфиксирующих клубеньковых бактерий. Лучшей питательной средой является торфяной нитрагит, подвергнутый радиационной стерилизации. При радиационной стерилизации субстрата повышается содержание микробных тел в готовом препарате и снижается зараженность посторонней микрофлорой, по сравнению с тепловой стерилизацией.

Курсовая работа

На тему: "Радиоактивность.

Применение радиоактивных изотопов в технике"

Введение

1.Виды радиоактивных излучений

2.Другие виды радиоактивности

3.Альфа-распад

4.Бета-распад

5.Гамма-распад

6.Закон радиоактивного распада

7.Радиоактивные ряды

8.Действие радиоактивного излучения на человека

9.Применение радиоактивных изотопов

Список использованной литературы

Введение

Радиоактивность – превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. Отсюда и название явления: на латыни radio – излучаю, activus – действенный. Это слово ввела Мария Кюри. При распаде нестабильного ядра – радионуклида из него вылетают с большой скоростью одна или несколько частиц высокой энергии. Поток этих частиц называют радиоактивным излучением или попросту радиацией.

Лучи Рентгена. Открытие радиоактивности было непосредственно связано с открытием Рентгена. Более того, некоторое время думали, что это один и тот же вид излучения. Конец 19 в. вообще был богат на открытие различного рода не известных до того «излучений». В 1880-е английский физик Джозеф Джон Томсон приступил к изучению элементарных носителей отрицательного заряда, в 1891 ирландский физик Джордж Джонстон Стони (1826–1911) назвал эти частицы электронами. Наконец, в декабре Вильгельм Конрад Рентген сообщил об открытии нового вида лучей, которые он назвал Х-лучами. До сих пор в большинстве стран они так и называются, но в Германии и России принято предложение немецкого биолога Рудольфа Альберта фон Кёлликера (1817–1905) называть лучи рентгеновскими. Эти лучи возникают, когда быстро летящие в вакууме электроны (катодные лучи) сталкиваются с препятствием. Было известно, что при попадании катодных лучей на стекло, оно испускает видимый свет – зеленую люминесценцию. Рентген обнаружил, что одновременно от зеленого пятна на стекле исходят какие-то другие невидимые лучи. Это произошло случайно: то в темной комнате светился находящийся неподалеку экран, покрытый тетрацианоплатинатом бария Ba (раньше его называли платиносинеродистым барием). Это вещество дает яркую желто-зеленую люминесценцию под действием ультрафиолетовых, а также катодных лучей. Но катодные лучи на экран не попадали, и более того, когда прибор был закрыт черной бумагой, экран продолжал светиться. Вскоре Рентген обнаружил, что излучение проходит через многие непрозрачные вещества, вызывает почернение фотопластинки, завернутой в черную бумагу или даже помещенной в металлический футляр. Лучи проходили через очень толстую книгу, через еловую доску толщиной 3 см, через алюминиевую пластину толщиной 1,5 см... Рентген понял возможности своего открытия: «Если держать руку между разрядной трубкой и экраном, – писал он, – то видны темные тени костей на фоне более светлых очертаний руки». Это было первое в истории рентгеноскопическое исследование.

Открытие Рентгена мгновенно облетело весь мир и поразило не только специалистов. В канун 1896 в книжном магазине одного немецкого города была выставлена фотография кисти руки. На ней были видны кости живого человека, а на одном из пальцев – обручальное кольцо. Это была снятая в рентгеновских лучах фотография кисти жены Рентгена. Первое сообщение Рентгена “О новом роде лучей” было опубликовано в «Отчетах Вюрцбургского физико-медицинского общества» 28 декабря оно было немедленно переведено и опубликовано в разных странах, выходящий в Лондоне самый известный научный журнал «Nature» («Природа») опубликовал статью Рентгена 23 января 1896.

Новые лучи стали исследовать во всем мире, только за один год на эту тему было опубликовано свыше тысячи работ. Несложные по конструкции рентгеновские аппараты появились и в госпиталях: медицинское применение новых лучей было очевидным.

Сейчас рентгеновские лучи широко используются (и не только в медицинских целях) во всем мире.

Лучи Беккереля. Открытие Рентгена вскоре привело к не менее выдающемуся открытию. Его сделал в 1896 французский физик Антуан Анри Беккерель. Он был 20 января 1896 на заседании Академии, на котором физик и философ Анри Пуанкаре рассказал об открытии Рентгена и продемонстрировал сделанные уже во Франции рентгеновские снимки руки человека. Пуанкаре не ограничился рассказом о новых лучах. Он высказал предположение, что эти лучи связаны с люминесценцией и, возможно, всегда возникают одновременно с этим видом свечения, так что, вероятно, можно обойтись и без катодных лучей. Свечение веществ под действием ультрафиолета – флуоресценция или фосфоресценция (в 19 в. не было строгого разграничения этих понятий) было знакомо Беккерелю: ею занимались и его отец Александр Эдмонд Беккерель (1820–1891), и дед Антуан Сезар Беккерель (1788–1878) – оба физики; физиком стал и сын Антуана Анри Беккереля – Жак, который «по наследству» принял кафедру физики при парижском Музее естественной истории, эту кафедру Беккерели возглавляли 110 лет, с 1838 по 1948.

Беккерель решил проверить, связаны ли лучи Рентгена с флуоресценцией. Яркой желто-зеленой флуоресценцией обладают некоторые соли урана, например, уранилнитрат UO 2 (NO 3) 2 . Такие вещества были в лаборатории Беккереля, где работал. С препаратами урана работал еще его отец, который показал, что после прекращения действия солнечного света их свечение исчезает очень быстро – менее чем за сотую долю секунды. Однако никто не проверял, сопровождается ли это свечение испусканием каких-то других лучей, способных проходить сквозь непрозрачные материалы, как это было у Рентгена. Именно это после доклада Пуанкаре решил проверить Беккерель. 24 февраля 1896 на еженедельном заседании Академии он рассказал, что беря фотопластинку, завернутую в два слоя плотной черной бумаги, кладя на нее кристаллы двойного сульфата калия-уранила K 2 UO 2 (SO 4)2·2H2O и выставляя все это на несколько часов на солнечный свет, то после проявления фотопластинки на ней можно видеть несколько размытый контур кристаллов. Если между пластинкой и кристаллами поместить монету или вырезанную из жести фигуру, то после проявления на пластинке появляется четкое изображение этих предметов.

Все это могло свидетельствовать о связи флуоресценции и рентгеновского излучения. Недавно открытые Х-лучи можно получать намного проще – без катодных лучей и необходимых для этого вакуумной трубки и высокого напряжения, но надо было проверить, не оказывается ли, что урановая соль, нагреваясь на солнце, выделяет какой-то газ, который проникает под черную бумагу и действует на фотоэмульсию Чтобы исключить эту возможность, Беккерель проложил между урановой солью и фотопластинкой лист стекла – она все равно засветилась. «Отсюда, – заключил свое краткое сообщение Беккерель, – можно сделать вывод о том, что светящаяся соль испускает лучи, которые проникают через не прозрачную для света черную бумагу и восстанавливают серебряные соли в фотопластинке». Как будто Пуанкаре оказался прав и Х-лучи Рентгена можно получить совсем другим способом.

Беккерель начал ставить множество опытов, чтобы лучше понять условия, при которых появляются лучи, засвечивающие фотопластинку, и исследовать свойства этих лучей. Он помещал между кристаллами и фотопластинкой разные вещества – бумагу, стекло, пластинки алюминия, меди, свинца разной толщины. Результаты получались те же, что и у Рентгена, что также могло служить доводом в пользу сходства обоих излучений. Помимо прямого солнечного света Беккерель освещал соль урана светом, отраженным зеркалом или преломленным призмой. Он получил, что результаты всех прежних опытов никак не были связаны с солнцем; имело значение лишь то, как долго урановая соль находилась вблизи фотопластинки. На следующий день Беккерель доложил об этом на заседании Академии, но вывод он, как потом выяснилось, сделал неверный: он решил, что соль урана, хотя бы раз «заряженная» на свету, способна потом сама длительное время испускать невидимые проникающие лучи.

Беккерель до конца года он опубликовал на эту тему девять статей, в одной из них он писал: «Разные соли урана были помещены в толстостенный свинцовый ящик... Защищенные от действия любых известных излучений, эти вещества продолжали испускать лучи, проходящие через стекло и черную бумагу..., через восемь месяцев».

Эти лучи исходили от любых соединений урана, даже от тех, которые не светятся на солнце. Еще более сильным (примерно в 3,5 раза) оказалось излучение металлического урана. Стало очевидным, что излучение хотя и похоже по некоторым проявлениям на рентгеновское, но обладает большей проникающей способностью и как-то связано с ураном, так что Беккерель стал называть его «урановыми лучами».

Беккерель обнаружил также, что «урановые лучи» ионизируют воздух, делая его проводником электричества. Практически одновременно, в ноябре 1896, английские физики Дж. Дж.Томсон и Эрнест Резерфорд (обнаружили ионизацию воздуха и под действием рентгеновских лучей. Для измерения интенсивности излучения Беккерель использовал электроскоп, в котором легчайшие золотые листочки, подвешенные за концы и заряженные электростатически, отталкиваются и их свободные концы расходятся. Если воздух проводит ток, заряд с листочков стекает и они опадают – тем быстрее, чем выше электропроводность воздуха и, следовательно, больше интенсивность излучения.

Оставался вопрос, каким образом вещество испускает непрерывное и не ослабевающее в течение многих месяцев излучение без подвода энергии от внешнего источника Сам Беккерель писал, что не в состоянии понять, откуда уран получает энергию, которую он непрерывно излучает. По этому поводу выдвигались самые разные гипотезы, иногда довольно фантастические. Например, английский химик и физик Уильям Рамзай писал: «… физики недоумевали, откуда мог бы взяться неисчерпаемый запас энергии в солях урана. Лорд Кельвин склонялся к предположению, что уран служит своего рода западней, которая улавливает ничем другим не обнаруживаемую лучистую энергию, доходящую до нас через пространство, и превращает ее в такую форму, в виде которой она делается способной производить химические действия».

Беккерель не мог ни принять эту гипотезу, ни придумать что-то более правдоподобное, ни отказаться от принципа сохранения энергии. Кончилось тем, что он вообще на некоторое время бросил работу с ураном и занялся расщеплением спектральных линий в магнитном поле. Этот эффект был обнаружен почти одновременно с открытием Беккереля молодым голландским физиком Питером Зееманом и объяснен другим голландцем – Хендриком Антоном Лоренцем.

На этом закончился первый этап исследования радиоактивности. Альберт Эйнштейн сравнил открытие радиоактивности с открытием огня, так как считал, что и огонь и радиоактивность – одинаково крупные вехи в истории цивилизации.

1. Виды радиоактивных излучений

Когда в руках исследователей появились мощные источники радиации, в миллионы раз более сильные, чем уран (это были препараты радия, полония, актиния), можно было более подробно ознакомиться со свойствами радиоактивного излучения. В первых исследованиях на эту тему самое активное участие приняли Эрнест Резерфорд супруги Мария и Пьер Кюри, А.Беккерель, многие другие. Прежде всего, была изучена проникающая способность лучей, а также действие на излучение магнитного поля. Оказалось, что излучение неоднородно, а представляет собой смесь «лучей». Пьер Кюри обнаружил, что при действии магнитного поля на излучение радия одни лучи отклоняются, а другие нет. Было известно, что магнитное поле отклоняет только заряженные летящие частицы, причем положительные и отрицательные в разные стороны. По направлению отклонения убедились в том, что отклоняемые β-лучи заряжены отрицательно. Дальнейшие опыты показали, что между катодными и β-лучами нет принципиальной разницы, откуда следовало, что они представляют собой поток электронов.

Отклоняющиеся лучи обладали более сильной способностью проникать через различные материалы, тогда как неотклоняющиеся легко поглощались даже тонкой алюминиевой фольгой – так вело себя, например, излучение нового элемента полония – его излучение не проникало даже сквозь картонные стенки коробки, в которой хранился препарат.

При использовании более сильных магнитов оказалось, что α-лучи тоже отклоняются, только значительно слабее, чем β-лучи, причем в другую сторону. Отсюда следовало, что они заряжены положительно и имеют значительно бóльшую массу (как потом выяснили, масса α-частиц в 7740 раз больше массы электрона). Впервые это явление обнаружили в 1899 А.Беккерель и Ф.Гизель. В дальнейшем выяснилось, что α-частицы представляют собой ядра атомов гелия (нуклид 4 Не) с зарядом +2 и массой 4 у.е.. Когда же в 1900 французский физик Поль Вийар (1860–1934) исследовал более подробно отклонение α- и β-лучей, он обнаружил в излучении радия и третий вид лучей, не отклоняющихся в самых сильных магнитных полях, это открытие вскоре подтвердил и Беккерель. Этот вид излучения, по аналогии с альфа- и бета-лучами, был назван гамма-лучами, обозначение разных излучений первыми буквами греческого алфавита предложил Резерфорд. Гамма-лучи оказались сходными с лучами Рентгена, т.е. они представляют собой электромагнитное излучение, но с более короткими длинами волн и соответственно с большей энергией. Все эти виды радиации описала М.Кюри в своей монографии «Радий и радиоактивность». Вместо магнитного поля для «расщепления» радиации можно использовать электрическое поле, только заряженные частицы в нем будут отклоняться не перпендикулярно силовым линиям, а вдоль них – по направлению к отклоняющим пластинам.

Долгое время было неясно, откуда берутся все эти лучи. В течение нескольких десятилетий трудами многих физиков была выяснена природа радиоактивного излучения и его свойства, были открыты новые типы радиоактивности.γ

Альфа-лучи испускают, главным образом, ядра самых тяжелых и потому менее стабильных атомов (в периодической таблице они расположены после свинца). Эти высокоэнергетичные частицы. Обычно наблюдается несколько групп α -частиц, каждая из которых имеет строго определенную энергию. Так, почти все α -частицы, вылетающие из ядер 226 Ra, обладают энергией в 4,78 МэВ (мегаэлектрон-вольт) и небольшая доля α -частиц энергией в 4,60 МэВ. Другой изотоп радия – 221 Ra испускает четыре группы α -частиц с энергиями 6,76, 6,67, 6,61 и 6,59 МэВ. Это свидетельствует о наличии в ядрах нескольких энергетических уровней, их разность соответствует энергии излучаемых ядром α -квантов. Известны и «чистые» альфа-излучатели (например, 222 Rn).

По формуле E = mu 2 /2 можно подсчитать скорость α-частиц с определенной энергией. Например, 1 моль α -частиц с Е = 4,78 МэВ имеет энергию (в единицах СИ) Е = 4,78·10 6 эВ  96500 Дж/(эВ·моль) = 4,61·10 11 Дж/моль и массу m = 0,004 кг/моль, откуда u α 15200 км/с, что в десятки тысяч раз больше скорости пистолетной пули. Альфа-частицы обладают самым сильным ионизирующим действием: сталкиваясь с любыми другими атомами в газе, жидкости или твердом теле, они «обдирают» с них электроны, создавая заряженные частицы. При этом α-частицы очень быстро теряют энергию: они задерживаются даже листом бумаги. В воздухе α-излучение радия проходит всего 3,3 см, α -излучение тория – 2,6 см и т.д. В конечном счете потерявшая кинетическую энергию α-частица захватывает два электрона и превращается в атом гелия. Первый потенциал ионизации атома гелия (He – e → He +) составляет 24,6 эВ, второй (He + – e → He +2) – 54,4 эВ, это намного больше, чем у любых других атомов. При захвате электронов α-частицами выделяется огромная энергия (более 7600 кДж/моль), поэтому ни один атом, кроме атомов самого гелия, не в состоянии удержать свои электроны, если по соседству окажется α -частица.

Очень большая кинетическая энергия α -частиц позволяет «увидеть» их невооруженным глазом (или с помощью обычной лупы), впервые это продемонстрировал в 1903 английский физик и химик Уильям Крукс (1832 – 1919. Он приклеил на кончик иглы еле видимую глазом крупинку радиевой соли и укрепил иглу в широкой стеклянной трубке. На одном конце этой трубки, недалеко от кончика иглы, помещалась пластинка, покрытая слоем люминофора (им служил сульфид цинка), а на другом конце было увеличительное стекло. Если в темноте рассматривать люминофор, то видно: все поле зрения усеяно вспыхивающими и сейчас же гаснущими искрами. Каждая искра – это результат удара одной α -частицы. Крукс назвал этот прибор спинтарископом (от греч. spintharis – искра и skopeo – смотрю, наблюдаю). С помощью этого простого метода подсчета α -частиц был выполнен ряд исследований, например, этим способом можно было довольно точно определить постоянную Авогадро.

В ядре протоны и нейтроны удерживаются вместе ядерными силами, Поэтому было непонятно, каким образом альфа-частица, состоящая из двух протонов и двух нейтронов, может покинуть ядро. Ответ дал в 1928 американский физик (эмигрировавший в 1933 из СССР)Джордж (Георгий Антонович) Гамов). По законам квантовой механики α -частицы, как и любые частицы малой массы, обладают волновой природой и потому у них есть некоторая небольшая вероятность оказаться вне ядра, на небольшом (примерно 6· 10 –12 см) расстоянии от него. Как только это происходит, на частицу начинает действовать с кулоновское отталкивание от очень близко находящегося положительно заряженного ядра.

Альфа-распаду подвержены, в основном, тяжелые ядра – их известно более 200, α-частицы испускаются большинством изотопов элементов, следующих за висмутом. Известны ти более легкие альфа-излучатели, в основном, это атомы редкоземельных элементов. Но почему из ядра вылетают именно альфа-частицы, а не отдельные протоны? Качественно это объясняется энергетическим выигрышем при α-распаде (α-частицы – ядра гелия устойчивы). Количественная же теория α-распада была создана лишь в 1980-х, в ее разработке принимали участие и отечественные физики,в их числе Лев Давидович Ландау, Аркадий Бейнусович Мигдал (1911–1991), заведующий кафедрой ядерной физики Воронежского университета Станислав Георгиевич Кадменский с сотрудниками.

Вылет из ядра α-частицы приводит к ядру другого химического элемента, который смещен в периодической таблице на две клетки влево. В качестве примера можно привести превращения семи изотопов полония (заряд ядра 84) в разные изотопы свинца (заряд ядра 82): 218 Po → 214 Pb, 214 Po → 210 Pb, 210 Po → 206 Pb, 211 Po → 207 Pb, 215 Po → 211 Pb, 212 Po → 208 Pb, 216 Po → 212 Pb. Изотопы свинца 206 Pb 207 Pb и 208 Pb стабильны, остальные радиоактивны.

Бета-распад наблюдается как у тяжелых, так и у легких ядер, например, у трития. Эти легкие частицы (быстрые электроны) обладают более высокой проникающей способностью. Так, в воздухе β -частицы могут пролететь несколько десятков сантиметров, в жидких и твердых веществах – от долей миллиметра до примерно 1 см. В отличие от α-частиц, энергетический спектр β -лучей не дискретный. Энергия вылетающих из ядра электронов может меняться почти от нуля до некоторого максимального значения, характерного для данного радионуклида. Обычно средняя энергия β -частиц намного меньше, чем у α -частиц; например, энергия β -излучения 228 Ra составляет 0,04 МэВ. Но бывают и исключения; так β -излучение короткоживущего нуклида 11 Ве несет энергию 11,5 МэВ. Долго было неясно, каким образом из одинаковых атомов одного и того же элемента вылетают частицы с разной скоростью. Когда же стало известно понятно строение атома и атомного ядра, появилась новая загадка: откуда вообще берутся вылетающие из ядра β -частицы – ведь в ядре никаких электронов нет. После того как в 1932 английский физик Джеймс Чедвиком открыл нейтрон, отечественные физики Дмитрий Дмитриевич Иваненко (1904–1994) и Игорь Евгеньевич Тамм и независимо немецкий физик Вернер Гейзенберг предположили, что атомные ядра состоят из протонов и нейтронов. В таком случае β -частицы должны образоваться в результате внутриядерного процесса превращения нейтрона в протон и электрон: n → p + e. Масса нейтрона немного превышает суммарную массу протона и электрона, избыток массы, в соответствии с формулой Эйнштейна E = mc 2 , дает кинетическую энергию вылетающего из ядра электрона, поэтому β -распад наблюдается, в основном, у ядер с избыточным числом нейтронов. Например, нуклид 226 Ra – α-излучатель, а все более тяжелые изотопы радия (227 Ra, 228 Ra, 229 Ra и 230 Ra) – β -излучатели.

Оставалось выяснить, почему β-частицы, в отличие от α -частиц, имеют сплошной спектр энергии, это означало, что одни из них обладают очень малой энергией, а другие – очень большой (и при этом движутся со скоростью, близкую к скорости света). Более того, суммарная энергия всех этих электронов (она была измерена с помощью калориметра) оказалась меньше, чем разность энергии исходного ядра и продукта его распада. Снова физики с толкнулись с «нарушением» закона сохранения энергии: часть энергии исходного ядра непонятно куда исчезала. Незыблемый физический закон «спас» в 1931 швейцарский физик Вольфганг Паули, который предположил, что при β-распаде из ядра вылетают две частицы: электрон и гипотетическая нейтральная частица – нейтрино с почти нулевой массой, которая и уносит избыток энергии. Непрерывный спектр β -излучения объясняется распределением энергии между электронами и этой частицей. Нейтрино (как потом оказалось, при β-распаде образуется так называемое электронное антинейтрино ) очень слабо взаимодействует с веществом (например, легко пронзает по диаметру земной шар и даже огромную звезду) и потому долго не обнаруживалось – экспериментально свободные нейтрино были зарегистрированы только в 1956 г. Таким образом, уточненная схема бета-распада такова: n → p + . Количественную теорию β-распада на основе представлений Паули о нейтрино разработал в 1933 итальянский физик Энрико Ферми, он же предложил название нейтрино (по-итальянски «нейтрончик»).

Превращение нейтрона в протон при β-распаде практически не изменяет массу нуклида, но увеличивает заряд ядра на единицу. Следовательно, образуется новый элемент, смещенный в периодической таблице на одну клетку вправо, например: → , →, → и т.д. (одновременно из ядра вылетают электрон и антинейтрино).

2. Другие виды радиоактивности

Помимо альфа- и бета-распадов, известны и другие типы самопроизвольных радиоактивных превращений. В 1938 американский физик Луис Уолтер Альварес открыл третий тип радиоактивного превращения – электронный захват (К-захват). В этом случае ядро захватывает электрон с ближайшей к нему энергетической оболочки (К-оболочки). При взаимодействии электрона с протоном образуется нейтрон, а из ядра вылетает нейтрино, уносящее избыток энергии. Превращение протона в нейтрон не изменяет массу нуклида, но уменьшает заряд ядра на единицу. Следовательно, образуется новый элемент, находящийся в периодической таблице на одну клетку левее, например, из получается стабильный нуклид (именно на этом примере Альварес открыл этот тип радиоактивности).

При К-захвате в электронной оболочке атома на место исчезнувшего электрона «спускается» электрон с более высокого энергетического уровня, излишек энергии либо выделяется в виде рентгеновского излучения, либо расходуется на вылет из атома более слабо связанных одного или нескольких электронов – так называемых оже-электронов, по имени французского физика Пьера Оже (1899–1993), открывшего этот эффект в 1923 (для выбивания внутренних электронов он использовал ионизирующее излучение).

В 1940 Георгий Николаевич Флеров (1913–1990) и Константин Антонович Петржак (1907–1998) на примере урана открыли самопроизвольное (спонтанное) деление, при котором нестабильное ядро распадается на два более легких ядра, массы которых различаются не очень сильно, например: → + + 2n. Этот тип распада наблюдается только у урана и более тяжелых элементов – всего более чем у 50 нуклидов. В случае урана спонтанное деление происходит очень медленно: среднее время жизни атома 238 U составляет 6,5 миллиарда лет. В 1938 немецкий физик и химик Отто Ган, австрийский радиохимик и физик Лизе Мейтнер (в ее честь назван элемент Mt – мейтнерий) и немецкий физикохимик Фриц Штрассман (1902–1980) обнаружили, что при бомбардировке нейтронами ядра урана делятся на осколки, причем вылетевшие из ядер нейтроны способны вызвать деление соседних ядер урана, что приводит к цепной реакции). Этот процесс сопровождается выделением огромной (по сравнению с химическими реакциями) энергии, что привело к созданию ядерного оружия и строительству АЭС.

В 1934 дочь Марии Кюри Ирэн Жолио-Кюри и ее муж Фредерик Жолио-Кюри открыли позитронный распад. В этом процессе один из протонов ядра превращается в нейтрон и антиэлектрон (позитрон) – частицу с той же массой, но положительно заряженную; одновременно из ядра вылетает нейтрино: p → n + e + + 238. Масса ядра при этом не изменяется, а смещение происходит, отличие от β – -распада, влево, β+-распад характерен для ядер с избытком протонов (так называемые нейтронодефицитные ядра). Так, тяжелые изотопы кислорода 19 О, 20 О и 21 О β – -активны, а его легкие изотопы 14 О и 15 О β+ - активны, например: 14 O → 14 N + e + + 238. Как античастицы, позитроны сразу же уничтожаются (аннигилируют) при встрече с электронами с образованием двух γ-квантов. Позитронный распад часто конкурирует с К-захватом.

В 1982 была открыта протонная радиоактивность: испускание ядром протона (это возможно лишь для некоторых искусственно полученных ядер, обладающих избыточной энергией). В 1960 физико-химик Виталий Иосифович Гольданский (1923–2001) теоретически предсказал двухпротонную радиоактивность: выбрасывание ядром двух протонов со спаренными спинами. Впервые она наблюдалась в 1970. Очень редко наблюдается и двухнейтронная радиоактивность (обнаружена в 1979).

В 1984 была открыта кластерная радиоактивность (от англ. cluster – гроздь, рой). При этом, в отличие от спонтанного деления, ядро распадается на осколки с сильно отличающимися массами, например, из тяжелого ядра вылетают ядра с массами от 14 до 34. Кластерный распад также наблюдается очень редко, и это в течение длительного времени затрудняло его обнаружение.

Некоторые ядра способны распадаться по разным направлениям. Например, 221 Rn на 80% распадается с испусканием α-частиц и на 20% – β-частиц, многие изотопы редкоземельных элементов (137 Pr, 141 Nd, 141 Pm, 142 Sm и др.) распадаются либо путем электронного захвата, либо с испусканием позитрона. Различные виды радиоактивных излучений часто (но не всегда) сопровождаются γ-излучением. Происходит это потому, что образующееся ядро может обладать избыточной энергией, от которой оно освобождается путем испускания гамма-квантов. Энергия γ-излучения лежит в широких пределах, так, при распаде 226 Ra она равна 0,186 МэВ, а при распаде 11 Ве достигает 8 МэВ.

Почти 90% из известных 2500 атомных ядер нестабильны. Нестабильное ядро самопроизвольно превращается в другие ядра с испусканием частиц. Это свойство ядер называется радиоактивностью. У больших ядер нестабильность возникает вследствие конкуренции между притяжением нуклонов ядерными силами и кулоновским отталкиванием протонов. Не существует стабильных ядер с зарядовым числом Z > 83 и массовым числом A > 209. Но радиоактивными могут оказаться и ядра атомов с существенно меньшими значениями чисел Z и A. Если ядро содержит значительно больше протонов, чем нейтронов, то нестабильность обуславливается избытком энергии кулоновского взаимодействия. Ядра, которые содержали бы большой избыток нейтронов над числом протонов, оказываются нестабильными вследствие того, что масса нейтрона превышает массу протона. Увеличение массы ядра приводит к увеличению его энергии.

Явление радиоактивности было открыто в 1896 году французским физиком А. Беккерелем, который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года французские физики М. и П. Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний и радий

В последующие годы исследованием природы радиоактивных излучений занимались многие физики, в том числе Э. Резерфорд и его ученики. Было выяснено, что радиоактивные ядра могут испускать частицы трех видов: положительно и отрицательно заряженные и нейтральные. Эти три вида излучений были названы α-, β- и γ-излучениями. Эти три вида радиоактивных излучений сильно отличаются друг от друга по способности ионизировать атомы вещества и, следовательно, по проникающей способности. Наименьшей проникающей способностью обладает α-излучение. В воздухе при нормальных условиях α-лучи проходят путь в несколько сантиметров. β-лучи гораздо меньше поглощаются веществом. Они способны пройти через слой алюминия толщиной в несколько миллиметров. Наибольшей проникающей способностью обладают γ-лучи, способные проходить через слой свинца толщиной 5–10 см.

Во втором десятилетии XX века после открытия Э. Резерфордом ядерного строения атомов было твердо установлено, что радиоактивность – это свойство атомных ядер. Исследования показали, что α-лучи представляют поток α-частиц – ядер гелия, β-лучи – это поток электронов, γ-лучи представляют собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны λ < 10 –10 м и вследствие этого – ярко выраженными корпускулярными свойствами, т.е. является потоком частиц – γ-квантов.

3. Альфа-распад

Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z – 2 и нейтронов N – 2. При этом испускается α-частица – ядро атома гелия . Примером такого процесса может служить α-распад радия: Альфа-частицы, испускаемые ядрами атомов радия, использовались Резерфордом в опытах по рассеянию на ядрах тяжелых элементов. Скорость α-частиц, испускаемых при α-распаде ядер радия, измеренная по кривизне траектории в магнитном поле, приблизительно равна 1,5·10 7 м/с, а соответствующая кинетическая энергия около 7,5·10 –13 Дж (приблизительно 4,8 МэВ). Эта величина легко может быть определена по известным значениям масс материнского и дочернего ядер и ядра гелия. Хотя скорость вылетающей α-частицы огромна, но она все же составляет только 5% от скорости света, поэтому при расчете можно пользоваться нерелятивистским выражением для кинетической энергии. Исследования показали, что радиоактивное вещество может испускать α-частицы с несколькими дискретными значениями энергий. Это объясняется тем, что ядра могут находиться, подобно атомам, в разных возбужденных состояниях. В одном из таких возбужденных состояний может оказаться дочернее ядро при α-распаде.

При последующем переходе этого ядра в основное состояние испускается γ-квант. Схема α-распада радия с испусканием α-частиц с двумя значениями кинетических энергий приведена на рис.2. Таким образом, α-распад ядер во многих случаях сопровождается γ-излучением.

В теории α-распада предполагается, что внутри ядер могут образовываться группы, состоящие из двух протонов и двух нейтронов, т.е. α-частица. Материнское ядро является для α-частиц потенциальной ямой, которая ограничена потенциальным барьером. Энергия α-частицы в ядре недостаточна для преодоления этого барьера (рис.3). Вылет α-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы под потенциальным барьером. Явление туннелирования имеет вероятностный характер.

4. Бета-распад

При бета-распаде из ядра вылетает электрон. Внутри ядер электроны существовать не могут, они возникают при β-распаде в результате превращения нейтрона в протон. Этот процесс может происходить не только внутри ядра, но и со свободными нейтронами. Среднее время жизни свободного нейтрона составляет около 15 минут. При распаде нейтрон превращается в протон и электрон

Измерения показали, что в этом процессе наблюдается кажущееся нарушение закона сохранения энергии, так как суммарная энергия протона и электрона, возникающих при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули высказал предположение, что при распаде нейтрона выделяется еще одна частица с нулевыми значениями массы и заряда, которая уносит с собой часть энергии. Новая частица получила название нейтрино (маленький нейтрон). Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. В процессе распада нейтрона возникает частица, которая называется электронным антинейтрино. Она обозначается символом . Поэтому реакция распада нейтрона записывается в виде

Аналогичный процесс происходит и внутри ядер при β- распаде. Электрон, образующийся в результате распада одного из ядерных нейтронов, немедленно выбрасывается из «родительского дома» (ядра) с огромной скоростью, которая может отличаться от скорости света лишь на доли процента. Так как распределение энергии, выделяющейся при β-распаде, между электроном, нейтрино и дочерним ядром носит случайный характер, β-электроны могут иметь различные скорости в широком интервале.

При β-распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным. Дочернее ядро оказывается ядром одного из изотопов элемента, порядковый номер которого в таблице Менделеева на единицу превышает порядковый номер исходного ядра. Типичным примером β-распада может служить превращение изотона тория возникающего при α-распаде урана в палладий

5. Гамма-распад

В отличие от α- и β-радиоактивности γ-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α-, так и при β-распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ-квантов, энергия которых может достигать нескольких МэВ.

6. Закон радиоактивного распада

В любом образце радиоактивного вещества содержится огромное число радиоактивных атомов. Так как радиоактивный распад имеет случайный характер и не зависит от внешних условий, то закон убывания количества N(t) нераспавшихся к данному моменту времени t ядер может служить важной статистической характеристикой процесса радиоактивного распада.

Пусть за малый промежуток времени Δt количество нераспавшихся ядер N(t) изменилось на ΔN < 0. Так как вероятность распада каждого ядра неизменна во времени, что число распадов будет пропорционально количеству ядер N(t) и промежутку времени Δt:

Коэффициент пропорциональности λ – это вероятность распада ядра за время Δt = 1 с. Эта формула означает, что скорость изменения функции N(t) прямо пропорциональна самой функции.

где N 0 – начальное число радиоактивных ядер при t = 0. За время τ = 1 / λ количество нераспавшихся ядер уменьшится в e ≈ 2,7 раза. Величину τ называют средним временем жизни радиоактивного ядра.

Для практического использования закон радиоактивного распада удобно записать в другом виде, используя в качестве основания число 2, а не e:

Величина T называется периодом полураспада. За время T распадается половина первоначального количества радиоактивных ядер. Величины T и τ связаны соотношением

Период полураспада – основная величина, характеризующая скорость радиоактивного распада. Чем меньше период полураспада, тем интенсивнее протекает распад. Так, для урана T ≈ 4,5 млрд. лет, а для радия T ≈ 1600 лет. Поэтому активность радия значительно выше, чем урана. Существуют радиоактивные элементы с периодом полураспада в доли секунды.

При α- и β-радиоактивном распаде дочернее ядро также может оказаться нестабильным. Поэтому возможны серии последовательных радиоактивных распадов, которые заканчиваются образованием стабильных ядер. В природе существует несколько таких серий. Наиболее длинной является серия состоящая из 14 последовательных распадов (8 – альфа-распадов и 6 бета-распадов). Эта серия заканчивается стабильным изотопом свинца (рис. 5).

В природе существуют еще несколько радиоактивных серий, аналогичных серии . Известна также серия, которая начинается с нептуния не обнаруженного в естественных условиях, и заканчивается на висмуте . Эта серия радиоактивных распадов возникает в ядерных реакторах.

Правило смещения. Правило смещения точно указывает, какие именно превращения претерпевает химический элемент, испуская радиоактивное излучение.

7. Радиоактивные ряды

Правило смещения позволило проследить превращения естественных радиоактивных элементов и выстроить из них три генеалогических дерева, родоначальниками которых являются уран-238, уран-235 и торий-232. Каждое семейство начинается с чрезвычайно долгоживущего радиоактивного элемента. Урановое семейство, например, возглавляет уран с массовым числом 238 и периодом полураспада 4,5·10 9 лет (в табл. 1 в соответствии с первоначальным названием обозначен как уран I).

Таблица 1. Радиоактивное семейство урана
Радиоактивный элемент Z Химический элемент А

Тип излуче-

Период полурас-

Уран I 92 Уран 238  4,510 9 лет
Уран X 1 90 Торий 234  24,1 сут
Уран X 2
Уран Z

Протактиний

Протактиний

 – (99,88%)
 (0,12%)
Уран II 92 Уран 234  2,510 5 лет
Ионий 90 Торий 230  810 4 лет
Радий 88 Радий 226  1620 лет
Радон 86 Радон 222  3,8 сут
Радий А 84 Полоний 218  3,05 мин
Радий В 82 Свинец 214  26,8 мин
83
83
Висмут
Висмут
214
214

 (99,96%)

(0,04%)

Радий С 84 Полоний 214  1,610 –4 с
Радий С 81 Таллий 210  1,3 мин
Радий D 82 Свинец 210  25 лет
Радий Е 83 Висмут 210  4,85 сут
Радий F 84 Полоний 210  138 сут
Радий G 82 Свинец 206 Стабилен

Семейство урана. На элементах семейства урана можно проследить большинство обсуждавшихся выше свойств радиоактивных превращений. Так, например, у третьего члена семейства наблюдается ядерная изомерия. Уран X 2 , испуская бета-частицы, превращается в уран II (T = 1,14 мин). Это соответствует бета-распаду возбужденного состояния протактиния-234. Однако в 0,12% случаев возбужденный протактиний-234 (уран X 2) излучает гамма-квант и переходит в основное состояние (уран Z). Бета-распад урана Z, также приводящий к образованию урана II, происходит за 6,7 ч.

Радий С интересен тем, что может распадаться двумя путями: испуская либо альфа-, либо бета-частицу. Эти процессы конкурируют между собой, но в 99,96% случаев происходит бета-распад с образованием радия С. В 0,04% случаев радий С испускает альфа-частицу и превращается в радий С (RaC). В свою очередь RaC и RaC путем эмиссии альфа- и бета-частиц соответственно превращаются в радий D.

Изотопы. Среди членов уранового семейства встречаются такие, атомы которых имеют одинаковый атомный номер (одинаковый заряд ядер) и разные массовые числа. Они идентичны по химическим свойствам, но различаются по характеру радиоактивности. Например, радий B, радий D и радий G, имеющие одинаковый со свинцом атомный номер 82, подобны свинцу по химическому поведению. Очевидно, что химические свойства не зависят от массового числа; они определяются строением электронных оболочек атома (следовательно, и Z ). С другой стороны, массовое число имеет решающее значение для ядерной стабильности радиоактивных свойств атома. Атомы с одинаковым атомным номером и разными массовыми числами называются изотопами. Изотопы радиоактивных элементов были открыты Ф.Содди в 1913, но вскоре Ф.Астон с помощью масс-спектроскопии доказал, что изотопы имеются и у многих стабильных элементов.

8.Действие радиоактивного излучения на человека

Радиоактивное излучение всех видов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма. Поэтому при работе с любым источником радиации необходимо принимать все меры по радиационной защите людей, которые могут попасть в зону действия излучения.

Однако человек может подвергаться действию ионизирующей радиации и в бытовых условиях. Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон Как видно из схемы, изображенной на рис.5, радон является продуктом α-распада радия и имеет период полураспада T = 3,82 сут. Радий в небольших количествах содержится в почве, в камнях, в различных строительных конструкциях. Несмотря на сравнительно небольшое время жизни, концентрация радона непрерывно восполняется за счет новых распадов ядер радия, поэтому радон может накапливаться в закрытых помещениях. Попадая в легкие, радон испускает α-частицы и превращается в полоний который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана (рис. 5). По данным Американской комиссии радиационной безопасности и контроля, человек в среднем получает 55% ионизирующей радиации за счет радона и только 11% за счет медицинских обслуживаний. Вклад космических лучей составляет примерно 8%. Общая доза облучения, которую получает человек за жизнь, во много раз меньше предельно допустимой дозы (ПДД), которая устанавливается для людей некоторых профессий, подвергающихся дополнительному облучению ионизирующей радиацией.

9. Применение радиоактивных изотопов

Одним из наиболее выдающихся исследований, проведенных с помощью «меченых атомов», явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми. Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Железо входит в состав гемоглобина красных кровяных шариков. При введении в пищу радиоактивных атомов железа было установлено, что свободный кислород, выделяемый при фотосинтезе, первоначально входил в состав воды, а не углекислого газа. Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей. Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения, йод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Наблюдая с помощью счетчика за отложением радиоактивного йода, можно быстро поставить диагноз. Большие дозы радиоактивного йода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный йод используют для лечения базедовой болезни. Интенсивное гамма-излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка).

Не менее обширны применения радиоактивных изотопов в промышленности. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.

Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве. Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами гамма-лучей от радиоактивных препаратов приводит к заметному увеличению урожайности. Большие дозы "радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радиоселекция). Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высоко продуктивные микроорганизмы, применяемые в производстве антибиотиков. Гамма-излучение радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов. Широкое применение получили «меченые атомы» в агротехнике. Например, чтобы выяснить, какое из фосфорных удобрений лучше усваивается растением, помечают различные удобрения радиоактивным фосфором 15 32P. Исследуя затем растения на радиоактивность, можно определить количество усвоенного ими фосфора из разных сортов удобрения.

Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом .Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели.


Список использованной литературы

1. Учение о радиоактивности. История и современность. М. Наука, 1973 2. Ядерные излучения в науке и технике. М. Наука, 1984 Фурман В. И. 3. Альфа-распад и родственные ядерные реакции. М. Наука, 1985

4. Ландсберг Г. С. Элементарный учебник физики. Том III. – М.: Наука, 19865. Селезнев Ю. А. Основы элементарной физики. –М.: Наука, 1964.6. CD ROM «Большая энциклопедия Кирилла и Мефодия», 1997.

7. Кюри М., Радиоактивность, пер. с франц., 2 изд., М. - Л., 1960

8. Мурин А.Н., Введение в радиоактивность, Л., 1955

9. Давыдов А.С., Теория атомного ядра, М., 1958

10. Гайсинский М.Н., Ядерная химия и ее приложения, пер. с франц., М., 1961

11. Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961; Средства сети INTERNET