Кто сделал пенициллин. Изобретатель антибиотиков или история спасения человечества. Генные мутации и проблема резистентности бактерий

Сотни человеческих жизней спасены за время применения в медицинской практике антибиотиков. Открытие пенициллина позволило легко избавлять людей от тех болезней, которые вплоть до начала XX века считались неизлечимыми.

Медицина до изобретения пенициллина

Многие столетия медицина была не в силах сохранить жизнь всех заболевших. Первым шагом к прорыву стало открытие факта о природе происхождения многих недугов. Речь идет о том, что большинство заболеваний возникает вследствие губительного воздействия микроорганизмов. Достаточно быстро ученые поняли, что можно уничтожить с помощью других микроорганизмов, проявляющих «враждебное отношение» к возбудителям недугов.

В процессе своей медицинской практики сразу несколько ученых еще в XIX пришли к такому выводу. Среди них был и Луи Пастер, который открыл, что действие некоторых видов микроорганизмов приводит к гибели бацилл Но этих сведений оказалось недостаточно. Нужно было найти конкретные действенные способы решения проблемы. Все попытки медиков создать универсальное лекарство заканчивались неудачно. И лишь чистая случайность и блестящая догадка помогли тому ученому, кто изобрел пенициллин.

Полезные свойства плесени

Сложно поверить в то, что самая обычная плесень обладает бактерицидными свойствами. Но это действительно так. Ведь это не просто зеленовато-серая субстанция, а микроскопический грибок. Он возникает из зародышей еще меньшего размера, которые витают в воздухе. В условиях плохой циркуляции воздуха и других факторов из них образуется плесень. Пенициллин еще не был открыт, но в трудах Авиценны XI века есть упоминания о лечении гнойных заболеваний с помощью плесени.

Спор двух ученых

В 60-х годах XIX века российские медики Алексей Полотебнов и Вячеслав Манассеин всерьез поспорили. Предметом спора была плесень. Полотебнов считал, что она является родоначальников всех микробов. Манассеин настаивал на противоположной точке зрения, и чтобы доказать свою правоту, провел серию исследований.

Он наблюдал за ростом спор плесени, которые посеял в питательную среду. В результате В. Манассеин увидел, что развитие бактерий не происходило именно на местах роста плесневого грибка. Его мнение теперь было подтверждено опытным путем: плесень действительно блокирует рост других микроорганизмов. Его оппонент признал ошибочность своего утверждения. Мало того, Полотебнов сам начал пристально изучать антибактериальные свойства плесени. Имеются сведения, что он даже успешно применял их в лечении плохо заживающих кожных язв. Полотебнов посвятил несколько глав своего научного труда описанию свойств плесени. Там же ученый рекомендовал использовать эти особенности в медицине, в частности, для лечения кожных заболеваний. Но эта идея не вдохновила других медиков и была несправедливо забыта.

Кто изобрел пенициллин

Эта заслуга принадлежит ученому-медику Александру Флемингу. Он был профессором в лаборатории больницы св. Марии города Лондона. Основная тема его научной деятельности - это рост и свойства стафилококков. Открытие пенициллина он совершил случайно. Особой аккуратностью Флеминг не славился, скорее, наоборот. Однажды, оставив на рабочем столе немытые чашки с бактериальными культурами, спустя несколько дней он заметил образовавшуюся плесень. Его заинтересовало то, что в пространстве вокруг плесени бактерии были уничтожены.

Флеминг дал название субстанции, выделяемой плесенью. Он назвал ее пенициллином. После проведения большого количества опытов Ученый убедился в том, что это вещество может убивать разные виды болезнетворных бактерий.

В каком году изобрели пенициллин? В 1928 наблюдательность Александра Флеминга подарила миру это чудодейственное по тем временам вещество.

Производство и применение

Флеминг не смог научиться получать пенициллин, поэтому сначала практическая медицина не очень заинтересовалась его открытием. Теми, кто изобрел пенициллин как медицинский препарат, были Говад Флори и Чейн Эрнст. Они вместе со своими соратниками выделили чистый пенициллин и создали на его основе первый в мире антибиотик.

В 1944 году, во время Второй мировой войны, ученые Соединенных Штатов смогли промышленным способом получать пенициллин. Апробация препарата заняла немного времени. Практически сразу пенициллин стали использовать вооруженные силы союзников для лечения раненых. Когда война закончилась, гражданское население США тоже смогло приобрести чудо-лекарство.

Все, кто изобрел пенициллин (Флеминг, Флори, Чейн), стали обладателями Нобелевской премии в области медицины.

Пенициллин: история открытия в России

Когда Великая Отечественная война еще продолжалась, И. В. Сталин предпринимал многочисленные попытки покупки лицензии на производство пенициллина в России. Но Соединенные Штаты вели себя неоднозначно. Сначала была названа одна сумма, надо сказать, астрономическая. Но позже ее еще два раза увеличивали, объясняя эти повышения неправильными первоначальными расчетами. В результате переговоры не увенчались успехом.

На вопрос о том, кто изобрел пенициллин в России, нет однозначного ответа. Поиск способов производства аналогов был поручен микробиологу Зинаиде Ермольевой. Она смогла получить вещество, названное впоследствии крустозином. Но по своим свойствам этот препарат сильно уступал пенициллину, да и сама технология производства была трудоемкой и дорогостоящей.

Было принято решение все же купить лицензию. Продавцом выступил Эрнст Чейн. После этого началось освоение технологии и запуск ее в производство. Этим процессом руководил Николай Копылов. пенициллина было налажено достаточно быстро. За это Николай Копылов был удостоен

Антибиотики в общем и пенициллин в частности, безусловно, обладают поистине уникальными свойствами. Но сегодня все чаще ученые проявляют беспокойство тем, что многие бактерии и микробы вырабатывают устойчивость к такому лечебному действию.

Эта проблема сейчас требует тщательного изучения и поиска возможных решений, ведь действительно, может наступить время, когда некоторые бактерии уже не будут реагировать на действие антибиотиков.

В культуре плесневых штамма грибков Penicillium Notatum на основе случайного открытия, что попадание в культуру бактерий плесневого грибка из внешней среды оказывает бактерицидное действие на культуру.

Фармакологическое действие

Антибиотик группы биосинтетических пенициллинов. Оказывает бактерицидное действие за счёт ингибирования синтеза клеточной стенки микроорганизмов.

Активен в отношении грамположительных бактерий: Staphylococcus spp., Streptococcus spp. (в том числе Streptococcus pneumoniae ), Corynebacterium diphtheriae , Bacillus anthracis ;

грамотрицательных бактерий: Neisseria gonorrhoeae , Neisseria meningitidis ;

анаэробных спорообразующих палочек;

К действию бензилпенициллина устойчивы штаммы Staphylococcus spp., продуцирующие пенициллиназу. Разрушается в кислой среде.

Новокаиновая соль бензилпенициллина по сравнению с калиевой и натриевой солями характеризуется большей продолжительностью действия благодаря низкой растворимости и образованию депо в месте инъекции.

Фармакокинетика

Показания

Лечение заболеваний, вызванных чувствительными к бензилпенициллину микроорганизмами: крупозная и очаговая пневмония, эмпиема плевры, сепсис , септицемия, пиемия, острый и подострый септический эндокардит, менингит , острый и хронический остеомиелит, инфекции мочевыводящих и жёлчных путей, ангина , гнойные инфекции кожи, мягких тканей и слизистых оболочек, рожа , дифтерия , скарлатина , сибирская язва , актиномикоз, лечение гнойно-воспалительных заболеваний в акушерско-гинекологической практике, ЛОР-заболеваний, глазных болезней, гонорея , бленнорея, сифилис .

Режим дозирования

Индивидуальный. Вводят в/м, в/в, п/к, эндолюмбально. При в/м и в/в введении взрослым суточная доза варьирует от 250 000 до 60 млн. ЕД. Суточная доза для детей в возрасте до 1 года составляет 50 000-100 000 ЕД/кг, старше 1 года - 50 000 ЕД/кг; при необходимости суточную дозу можно увеличить до 200 000-300 000 ЕД/кг, по жизненным показаниям - до 500 000 ЕД/кг. Кратность введения 4-6 раз/сут. Эндолюмбально вводят в зависимости от заболевания и тяжести течения взрослым - 5000-10 000 ЕД, детям - 2000-5000 ЕД 1 раз/сут в течение 2-3 дней, затем переходят на в/м введение. П/к бензилпенициллин применяют для обкалывания инфильтратов (100 000-200 000 ЕД в 1 мл 0.25 %-0.5 % раствора новокаина). В полости (в том числе в брюшную, плевральную) вводят в концентрации 10 000-20 000 ЕД/1 мл для взрослых, и 2000-5000 ЕД/1 мл для детей. Продолжительность введения 5-7 дней, затем переходят на в/м введение. Бензилпенициллина калиевую соль применяют только в/м и п/к, в тех же дозах что и бензилпенициллина натриевую соль. Бензилпенициллина новокаиновую соль применяют только в/м. Средняя терапевтическая доза для взрослых: разовая - 300 000 ЕД, суточная - 600 000 ЕД. Детям в возрасте до 1 года - 50 000-100 000 ЕД/кг/сут, старше 1 года - 50 000 ЕД/кг/сут. Кратность введения 3-4 раза/сут. Длительность лечения бензилпенициллином в зависимости от формы и тяжести течения заболевания может составлять от 7-10 дней до 2 мес и более.

Побочное действие

Со стороны пищеварительной системы: диарея, тошнота, рвота. Эффекты, обусловленные химиотерапевтическим действием: кандидоз влагалища, кандидоз полости рта. Со стороны ЦНС: при применении бензилпенициллина в высоких дозах, особенно при эндолюмбальном введении, возможно развитие нейротоксических реакций: тошнота, рвота, повышение рефлекторной возбудимости, симптомы менингизма, судороги, кома. Аллергические реакции: повышение температуры тела, крапивница, кожная сыпь, сыпь на слизистых оболочках, боли в суставах, эозинофилия, ангионевротический отёк. Описаны случаи анафилактического шока с летальным исходом.

Противопоказания

Повышенная чувствительность к бензилпенициллину и другим препаратам из группы пенициллинов и цефалоспоринов. Эндолюмбальное введение противопоказано пациентам, страдающим эпилепсией.

Беременность и лактация

Особые указания

С осторожностью применяют у пациентов с нарушениями функции почек, при сердечной недостаточности, предрасположенности к аллергическим реакциям (особенно при лекарственной аллергии), при повышенной чувствительности к цефалоспоринам (из-за возможности развития перекрёстной аллергии). Если через 3-5 дней после начала применения эффекта не отмечается, следует перейти к применению других антибиотиков или комбинированной терапии. В связи с возможностью развития грибковой суперинфекции целесообразно при лечении бензилпенициллином назначать противогрибковые препараты. Необходимо учитывать, что применение бензилпенициллина в субтерапевтических дозах или досрочное прекращение лечения часто приводит к появлению резистентных штаммов возбудителей. Бензилпенициллин в форме порошка для инъекций включён в Перечень ЖНВЛС.

Лекарственное взаимодействие

Пробенецид снижает канальцевую секрецию бензилпенициллина, в результате повышается концентрация последнего в плазме крови, увеличивается период полувыведения. При одновременном применении с антибиотиками, оказывающими бактериостатическое действие (тетрациклин), уменьшается бактерицидное действие бензилпенициллина.

Ссылки

  • К.В. Русанов. Пенициллиновый приоритет: у линии фронта. (газета «Новости медицины и фармации», 2007, № 11)

Wikimedia Foundation . 2010 .

Синонимы :
  • Пенитенциарные учреждения
  • Пенк

Смотреть что такое "Пенициллин" в других словарях:

    ПЕНИЦИЛЛИН - ПЕНИЦИЛЛИН, АНТИБИОТИК, образуемый плесенными грибками рода пенициллов (Penicillum). Первый из полученных учеными антибиотиков (открыт Александром ФЛЕМИНГОМ в 1928 г.). Позднее приобрел растворимую форму, а сегодня может производиться… … Научно-технический энциклопедический словарь

    Пенициллин U - (Penicillin U) природный пенициллин, устойчивый к к те желудочного сока. Спектр действия аналогичен бензилпенициллину (см.). Вводят перорально в таблетках по 0,25 0,5 г 4 раза в сут. Высокие концентрации в крови не создаются, поэтому его… … Словарь микробиологии

    ПЕНИЦИЛЛИН - ПЕНИЦИЛЛИН, а, муж. Антибиотик, получаемый из нек рых видов плесневого грибка или синтетически. Инъекции пенициллина. | прил. пенициллиновый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Способы применения: внутривенно, внутримышечно, перорально

Легальный статус: ℞ (только по рецепту)

Метаболизм: печень

Биологический период полувыведения: от 0,5 до 56 часов

Выведение: почки

Формула: C9H11N2O4S

Молярная масса: 243,26 г · моль-1

Пенициллин (PCN) представляет собой группу антибиотиков, которые включают пенициллин G (внутривенное использование), пенициллин V (пероральное использование), прокаин пенициллин и бензатин пенициллин (внутримышечное использование). Пенициллиновые антибиотики были одними из первых лекарств, эффективных против многих бактериальных инфекций, вызванных стафилококками и стрептококками. Пенициллины до сих пор широко используются сегодня, хотя многие виды бактерий выработали резистентность к этим препаратам вследствие их обширного использования. Около 10% людей сообщают об аллергии на пенициллин; тем не менее у до 90% человек из этой группы на самом деле может не быть аллергии. Серьезная аллергия развивается только у примерно 0,03% человек. Все пенициллины являются бета-лактамными антибиотиками. Пенициллин был открыт в 1928 году шотландским ученым Александром Флемингом. Люди начали использовать его для лечения инфекций в 1942 году. Существует несколько расширенных пенициллиновых семейств, которые эффективны против дополнительных бактерий. Они включают антистафилококковые пенициллины, аминопенициллины и антисинегнойные пенициллины. Они получены из грибов Penicillium.

Медицинское использование

Термин «пенициллин» часто используется в общем смысле для обозначения бензилпенициллина (пенициллина G, оригинального пенициллина, открытого в 1928 году), прокаин бензилпенициллина (прокаин пенициллина), бензатин бензилпенициллина (бензатин пенициллина) и феноксиметилпенициллина (пенициллина V). Прокаинбензилпенициллин и бензатинбензил пенициллин имеют такую же антибактериальную активность, как бензилпенициллин, но действуют в течение более длительного периода времени. Феноксиметилпенициллин менее активен в отношении грамотрицательных бактерий, чем бензилпенициллин. Бензилпенициллин, прокаин пенициллин и бензатин пенициллин даются инъекционно (парентерально), а феноксиметилпенициллин – перорально.

Восприимчивость

В то время как количество устойчивых к пенициллину бактерий возрастает, пенициллин по-прежнему может быть использован для лечения широкого спектра инфекций, вызванных некоторыми чувствительными бактериями, в том числе стрептококками, стафилококками, клостридиями и листериями. Следующий список показывает данные восприимчивости минимальнйо ингибирующей концентрации для нескольких значимых с медицинской точки зрения бактерий:

    Листерия: от менее чем или равно 0,06 мкг / мл до 0,25 мкг / мл

    Менингококк: от менее чем или равно 0,03 мкг / мл до 0,5 мкг / мл

    Стафилококк: от менее чем или равна 0,015 мкг / мл до более чем 32 мкг / мл

Побочные эффекты

Общие побочные реакции (≥ 1% людей), связанные с использованием пенициллинов: диарея, повышенная чувствительность, тошнота, сыпь, нейротоксичность, крапивница и суперинфекции (в том числе кандидоз). Нечастые побочные эффекты (0,1-1% людей) включают повышение температуры, рвоту, эритему, дерматит, отек Квинке, судороги (особенно у людей, страдающих эпилепсией) и псевдомембранозный колит. Около 10% людей сообщают об аллергии на пенициллин; тем не менее, в 90% случаев у этих людей в действительности нет аллергии. Серьезные аллергии наблюдаются только в примерно 0,03% случаев. Боль и воспаление в месте инъекции является обычным явлением при парентеральном введении бензатин бензилпенициллина, бензилпенициллина, и, в меньшей степени, прокаина бензилпенициллина. Хотя аллергия на пенициллин по-прежнему является наиболее часто сообщаемой аллергией, менее 20% людей, которые считают, что у них есть аллергия на пенициллин, действительно имеют аллергию на пенициллин, тем не менее, пенициллин по-прежнему является наиболее частой причиной тяжелых аллергических реакций на лекарства. Важно отметить, что существует иммунологическая реакция на стрептолизин S, токсин, выпускаемый некоторыми убитыми бактериями и связанный с инъекцией пенициллином, что может привести к смертельной сердечной синкопе. Могут развиться аллергические реакции на любой β-лактамный антибиотик у до 1% пациентов, получавших этот препарат. Аллергическая реакция представляет собой тип реакции гиперчувствительности I. Анафилаксия будет развиваться у примерно 0.01% пациентов. Ранее было принято считать, что существует до 10% перекрестной чувствительности между полусинтетическими пенициллинами, цефалоспоринами и карбапенемами, из-за общего β-лактамного кольца. В 2006 году не было обнаружено повышенного риска перекрестной аллергии для цефалоспоринов второго поколения или более поздних цефалоспоринов. Тем не менее, в качестве общего риска, исследования показывают, что все бета-лактамы имеют риск развития очень серьезных реакций у восприимчивых пациентов. Частота этих реакций меняется в зависимости от структуры. В 2006 году было показано, что одной из главных особенностей при определении частоты иммунологических реакций является сходство боковых цепей (например, цефалоспорины первого поколения похожи на пенициллины); именно поэтому бета-лактамы связаны с различными частотами серьезных реакций (например, анафилаксии).

Механизм действия

Бактерии постоянно перестраивают свои пептидогликанновые клеточные стенки, одновременно строя и разрушая части клеточной стенки, по мере роста и деления. β-лактамные антибиотики ингибируют образование поперечных связей пептидогликана в клеточной стенке бактерий; это достигается за счет связывания четырехчленного β-лактамного кольца пенициллинов с ферментом DD-транспептидазы. Как следствие этого, DD-транспептидаза не может катализировать образование этих сшивок, и развивается дисбаланс между производством и деградацией клеточной стенки, в результате чего клетки быстро погибают. Ферменты, которые гидролизуют поперечные связи пептидогликана, продолжают функционировать даже тогда, когда ферменты, которые формируют такие поперечные связи, не функционируют. Это ослабляет клеточную стенку бактерии, и осмотическое давление становится все более некомпенсированным, что, в конечном итоге, вызывает гибель клеток (цитолиз). Кроме того, увеличение прекурсоров пептидогликана вызывает активацию гидролаз бактериальной клеточной стенки и автолиз, что дополнительно поглощает пептидогликаны клеточной стенки. Небольшой размер пенициллинов повышает их активность, что позволяет им проникать на всю глубину клеточной стенки. Это отличается от гликопептидных антибиотиков ванкомицина и тейкопланина, оба из которых гораздо больше пенициллинов. Грамположительные бактерии называются протопластами, когда они теряют свои клеточные стенки. Грамотрицательные бактерии полностью не теряют своих клеточных стенок и называются сферопластами после лечения пенициллином. Пенициллин демонстрирует синергетический эффект с аминогликозидами, так как ингибирование синтеза пептидогликана позволяет аминогликозидам более легко проникать в бактериальную клеточную стенку, что способствует разрушению бактериального синтеза белка в клетке. Это приводит к пониженной минимальной бактериальной концентрации (МБК) для чувствительных микроорганизмов. Пенициллины, как и другие β-лактамные антибиотики, блокируют не только деление бактерий, в том числе цианобактерий, но и деление цианелл, фотосинтезирующих органелл глаукофитовых водорослей, а также деление хлоропластов мохообразных. В отличие от этого, они не оказывают никакого влияния на пластиды высокоразвитых сосудистых растений. Это поддерживает эндосимбиотическую теорию эволюции разделения пластид у наземных растений. Химическая структура пенициллина действует с очень точным, зависящим от рН, механизмом, с помощью уникальной пространственной сборки молекулярных компонентов, которые могут активироваться путем протонирования. Пенициллин может проходить через телесные жидкости, нацеливаясь на ферменты, ответственные за синтез клеточной стенки у грамположительных бактерий и инактивируя их, в то же время избегая окружающих ферментов, не являющихся целями. Пенициллин может защитить себя от спонтанного гидролиза в организме в его анионной форме, при сохранении его потенциала в качестве сильного ацилирующего агента, активируемого только при приближении к целевому ферменту транспептидазы и протонируемого в активном центре. Это целевое протонирование неутрализует фрагмент карбоновой кислоты, который является ослаблением связи β-лактамного кольца N-C (= O), что приводит к самоактивации.

Структура

Термин «пенам» используется для описания общего базового скелета члена семьи пенициллинов. Это ядро имеет молекулярную формулу R-C9H11N2O4S, где R является переменной боковой цепью, которая отличает пенициллины друг от друга. Ядро пенама имеет молекулярную массу 243 г / моль, при этом более крупные пенициллины имеют молекулярную массу около 450, например, клоксациллин имеет молекулярную массу 436 г / моль. Основной структурной особенностью пенициллинов является четырехчленное β-лактамное кольцо; этот структурный фрагмент играет важную роль в антибактериальной активности пенициллина. Β-лактамное кольцо само по себе слито с пятичленным тиазолидиновым кольцом. Слияние этих двух колец приводит к тому, что β-лактамное кольцо является более реакционноспособным, чем моноциклические бета-лактамы, так как два конденсированных кольца искажают β-лактамную амидную связь и, следовательно, удаляют резонансную стабилизацию, обычно находящуюся в этих химических связях.

История

Открытие

Начиная с конца 19-го века, многие ученые и медики обращали внимание на антибактериальные свойства различных типов форм пенициллина, включая плесненый пенициллин, но они не смогли понять, что за процесс вызывает эффект. Эффекты плесненого пенициллина наконец были выделены в 1928 году шотландским ученым Александром Флемингом, в работе, которая кажется независимой от ранних наблюдений. Флеминг сообщил о дате своего открытия пенициллина – утро пятницы 28 сентября 1928 года. Согласно традиционной версии, эта история описывается как счастливая случайность: в своей лаборатории в подвале больницы Святой Марии в Лондоне (ныне часть Имперского Колледжа), Флеминг заметил чашку Петри, содержащую Staphylococcus, который был по ошибке оставлен открытым и был загрязнен сине-зеленой плесенью, сформировавшей видимый рост. Вокруг плесени наблюдался ореол заторможенного роста бактерий. Флеминг пришел к выводу о том, что плесень выпустила вещество, которое подавляло рост и вызывала лизис бактерий. После того, как Флеминг сделал свое открытие, он вырастил чистую культуру и обнаружил, что это была плесень пенициллина, сейчас известная как Penicillium notatum. Флеминг ввел термин «пенициллин», чтобы описать фильтрат бульонной культуры плесени пенициллина. Флеминг попросил C. J. La Touche помочь определить форму, которую он неправильно идентифицирован как Penicillium rubrum (впоследствии исправленной Чарльзом Томом). Он выразил первоначальный оптимизм, что пенициллин станет полезным дезинфицирующим средством, из-за его высокой эффективности и минимальной токсичности по сравнению с антисептиками того времени, и отметил его лабораторное значение в изоляции Bacillus influenzae (которая теперь называется Haemophilus influenzae). Флеминг был плохим пропагандистом и оратором, поэтому результатам его исследований изначально не уделялось большого внимания. Он не смог убедить химика помочь ему извлечь и стабилизировать антибактериальное соединение, содержащееся в бульонном фильтрате. Несмотря на отсутствие химика, ученый не потерял интерес в потенциальном использовании пенициллина и представил документ, озаглавленный «Среда для изоляции бациллы Пфайффера» в клуб медицинских исследований Лондона, который не был встречен с большим интересом, а его коллеги проявили даже еще меньший энтузиазм. Если бы Флеминг был более успешен в том, чтобы заинтересовать других ученых своей работой, пенициллин для использования в медицинских целях, возможно, был бы разработан годами ранее. Несмотря на отсутствие интереса коллег-ученых, Флеминг провел несколько экспериментов на антибиотике, который он открыл. Наиболее важным результатом оказалось то, что антибиотик был не токсичен в организме человека, что было доказано путем проведения испытаний токсичности сначала на животных, а затем на людях. Его последующие эксперименты по реакции пенициллина на нагревание и рН позволили Флемингу повысить стабильность соединения. Один тест, которые современные ученые не находят в его работах, включает испытание пенициллина на инфицированном животном, и его результаты, вероятно, вызвали бы большой интерес к пенициллину и ускорили бы его развитие почти на десять лет.

Медицинское применение

В 1930 году Сесиль Джордж Пейн, патологоанатом из Королевского лазарета в Шеффилде, попытался использовать пенициллин для лечения сикоза обыкновенного в фолликулах бороды, но безуспешно. Перейдя к офтальмии новорожденных, гонококковой инфекции у детей раннего возраста, 25 ноября 1930 г, он достиг первого зарегистрированного результата лечения с пенициллином. Затем он вылечил четырех дополнительных пациентов (одного взрослого и троих детей) от глазных инфекций, однако ему так и не удалось вылечить пятого пациента. В 1939 году австралийский ученый Говард Флори (позднее барон Флори) и группа исследователей (Эрнст Борис Чейн, Артур Дункан Гарднер, Норман Хитли, М. Дженнингс, Дж. Орр-Юинг и Г. Сандерс) из Школы Патологии сэра Уильяма Данна, Оксфордский университет, добились прогресса в демонстрации in vivo бактерицидного действия пенициллина. В 1940 году они показали, что пенициллин эффективно лечит бактериальную инфекцию у мышей В 1941 году они вылечили полицейского Альберта Александра с тяжелой инфекцией лица. Его состояние улучшилось, но затем поставки пенициллина прекратились, и он умер. Впоследствии, были успешно вылечены несколько других пациентов.

Массовое производство

К концу 1940 года, команда из Оксфорда под руководством Говарда Флори изобрела способ массового производства препарата, но размер выработки оставался на низком уровне. В 1941 году Флори и Хитли совершили поездку в США с целью заинтересовать фармацевтические компании в производстве пенициллина. Флори и Чейн разделили Нобелевскую премию в области медицины 1945 года с Флемингом. Существовала проблема массового производства этого препарата. 14 марта 1942 года первый пациент со стрептококковой септицемией был обработан пенициллином американского производства производства компании Merck & от Co. Половина общего объема поставок, производимого в то время, использовалась для лечения этого пациента. К июню 1942 года в США было достаточно пенициллина для лечения десяти пациентов. В июле 1943 года Совет военного производства составил план для массового распределения запасов пенициллина в союзные войска, воюющие в Европе. Результаты исследования брожения на кукурузном экстракте в лаборатории Северных региональных исследований в Пеории, штат Иллинойс, позволили Соединенным Штатам производить 2,3 миллиона доз во времени для вторжения в Нормандии весной 1944 г. После осуществления поиска по всему миру, в 1943 году на рынке Пеории, штат Иллинойс, была найдена заплесневелая дыня, содержащая лучший штамм для производства с использованием процесса с жидким кукурузным экстрактом. Крупномасштабное производство было осуществлено благодаря методу брожения в глубокой цистерне, разработанному инженером-химиком Маргарет Хатчинсон Руссо. В качестве прямого результата войны и создания Совета военного производства, к июню 1945 года производилось более 646 миллиардов единиц пенициллина в год. G. Raymond Rettew внес значительный вклад в военные усилия американцев благодаря своим методам для получения коммерческих количеств пенициллина. Во время Второй мировой войны, пенициллин спас жизни 12% -15% солдат союзных войск. Его доступность, однако, была сильно ограничена из-за сложности изготовления большого количества пенициллина и быстрого почечного клиренса препарата, связанного с необходимостью частого приема. Методы массового производства пенициллина были запатентованы Эндрю Джексоном Мойером в 1945 году. Флори не запатентовал пенициллин по совету сэра Генри Дейла, заявившего, что это было бы неэтично. Пенициллин активно выводится из организма. Около 80% дозы пенициллина выводится в течение трех-четырех часов после введения. В начале эры пенициллина препарата был так мало, и он так высоко ценился, что распространенной практикой стал сбор мочи пациентов, проходящих лечение, из которой пенициллин может быть выделен и использован повторно. Такое решение не было удовлетворительным, поэтому исследователи искали способ замедлить экскрецию пенициллина. Они надеялись найти молекулу, которая могла бы конкурировать с пенициллином относительно переносчика органической кислоты, ответственной за экскрецию, таким образом, что переносчик преимущественно будет выделять конкурирующую молекулу и пенициллин будет сохранен. Агент выведения мочевой кислоты пробенецид оказался подходящим. При совместном введении пробенецида и пенициллина, пробенецид конкурентно ингибирует выделение пенициллина, повышая концентрацию пенициллина и продлевая его активность. В конце концов, появление методов массового производства и полусинтетические пенициллины решили вопросы поставок, поэтому от использования пробенецида отказались. Пробенецид все еще полезен, однако, при лечении некоторых инфекций, требующих особенно высокой концентрации пенициллина. После Второй мировой войны, Австралия стала первой страной, в которой препарат стал доступным для гражданского использования. В США, пенициллин стал доступным для широкой общественности 15 марта 1945 года.

Определение структуры и полный синтез

В 1945 году химическая структура пенициллина была определена с помощью рентгеновской кристаллографии Дороти Кроуфут Ходжкин, которая также работала в Оксфорде. Позже она получила Нобелевскую премию за это определение структуры и другие открытия. Химик Джон С. Шихан из Массачусетского технологического института (MIT) завершил первый химический синтез пенициллина в 1957 году. Шихан начал свои исследования по синтезу пенициллина в 1948 году, и в ходе этих исследований были разработаны новые методы синтеза пептидов, а также новых защитных групп – групп, которые маскируют реакционную способность некоторых функциональных групп. Несмотря на то, что первоначальный синтез, разработанный Шиханом, не подходит для массового производства пенициллина, одно из промежуточных соединения в синтезе Шихэна представляло собой 6-аминопенициллановую кислоту (6-АРА), ядро пенициллина. Присоединение различных групп к «ядру» 6-APA пенициллина позволило создать новые формы пенициллина.

Дальнейшее развитие

Узкий круг поддающихся лечению заболеваний или «спектр активности» пенициллинов, наряду с плохой активностью перорально активного феноксиметилпенициллина, привели к поиску производных пенициллина, которые могут лечить более широкий круг инфекций. Выделение 6- APA, ядра пенициллина, позволило изготовлять полусинтетические пенициллины, с различными усовершенствованиями по сравнению с бензилпенициллином (биодоступность, спектр, стабильность, толерантность). Первым важным событием стало развитие ампициллина в 1961 году. Препарат имеет более широкий спектр активности, чем любой из исходных пенициллинов. Дальнейшее развитие получили β-лактамаза-устойчивые пенициллины, в том числе флуклоксациллин, диклоксациллин и метициллин. Они имеют существенное значение в их активности в отношении видов бактерий, продуцирующих β-лактамазы, но были неэффективны против штаммов метициллин-устойчивого золотистого стафилококка (MRSA), которые появились впоследствии. Другой линией развития истинных пенициллинов были антисинегнойные пенициллины, такие как карбенициллин, тикарциллин и пиперациллин, полезные по своей активности в отношении грамотрицательных бактерий. Тем не менее, полезность β-лактамного кольца была таковой, что соответствующие антибиотики, в том числе мециллинамы, карбапенемы и, самое главное, цефалоспорины, все еще сохраняют его в центре их структур.

Производство

Пенициллин является вторичным метаболитом некоторых видов Penicillium и производится, когда рост гриба подавляется стрессом. Он не производится в период активного роста. Производство также ограничивается обратной связью в пути синтеза пенициллина. α-кетоглутарат + AcCoA → homocitrate → L-α-аминоадипиновая кислота → L-лизин + бета-лактам Побочный продукт, L-лизин, ингибирует продукцию гомоцитрата, поэтому при производстве пенициллина следует избегать наличия экзогенного лизина. Клетки Penicillium выращивают с использованием техники, называемой подпиткой культуры, в которой клетки постоянно подвержены стрессу, который необходим для индукции производства пенициллина. Имеющиеся источники углерода также имеют важное значение: глюкоза подавляет производство пенициллина, в то время как лактоза не подавляет его. Значение рН и уровней азота, лизина, фосфата и кислорода также следует тщательно контролировать. Биотехнологический метод направленной эволюции был применен для получения в результате мутации большого числа штаммов Penicillium. Эти методы включают в себя подверженную ошибкам ПЦР, перетасовку в ДНК, ITCHY и нить-перекрывающая ПЦР. Полусинтетические пенициллины получают, начиная с ядра пенициллина 6-АРА.

Биосинтез

В целом, существует три основных и важных шагов в биосинтезе пенициллина G (бензилпенициллина). Первый шаг состоит из конденсации трех аминокислот – L-альфа-аминоадипиновой кислоты, L-цистеина, L-валина в трипептид. Перед конденсацией в трипептид, аминокислота L-валин должна пройти эпимеризацию и стать D-валином. Конденсированный трипептид называется δ- (L-α-аминоадипил)-L-цистеин-D-валин (ACV). Реакция конденсации и эпимеризации катализируются ферментом δ- (L-α -аминоадипил)-L-цистеин-D-валин-синтетазы (ACVS), нерибосомной пептидной синтетазы или NRPS. Второй стадией в биосинтезе пенициллина G является окислительное превращение линейного ACV в бициклическое промежуточное изопенициллин N путем изопенициллин N-синтазы (IPNS), которая кодируется геном PCBC. Изопенициллин N является очень слабым промежуточным продуктом, так как он не демонстрирует сильной антибиотической активности. Последним шагом является переамидирование при помощи изопенициллин N, N-ацилтрансферазы, в которой α-амиоадипиловая боковая цепь изопенициллина N удаляется и меняется на фенилацетильную боковую цепь. Эта реакция, кодируемая геном penDE, является уникальной в процессе получения пенициллинов.

:Tags

Список использованной литературы:

Gonzalez-Estrada, A; Radojicic, C (May 2015). «Penicillin allergy: A practical guide for clinicians». Cleveland Clinic journal of medicine. 82 (5): 295–300. doi:10.3949/ccjm.82a.14111 (inactive 2016-06-20). PMID 25973877

Penicillium chrysogenium (notatum) — один из представителей рода Penicillium. «Рекордсмен» по выработке пенициллина

Сама идея применять для борьбы с микроорганизмами другие микроорганизмы (или то, что они синтезируют), витала в медицине очень давно.
В самом микробном сообществе одни микробы постоянно подавляют другие и находятся в таком динамическом равновесии.

Еще в 1897 году, задолго до открытия пенициллина, Эрнест Дюшен использовал в эксперименте плесень для лечения тифа у морских свинок.

Penicillium roqueforti — «благородная плесень». Используется для приготовления сыра рокфор и дает ему своеобразный вкус

Как думаете, что общего у морских свинок, сыра с плесенью и водопроводной воды?

Вопрос довольно сложный. Казалось бы: ничего общего. Но если бы вы были французским студентом-медиком конца 19 века, то эти предметы были бы вашими научными реагентами.
Эти реагенты использовал блестящий Эрнест Дюшен для обнаружения антибиотиков, практически за 35 лет до того, когда Александр Флеминг открыл пенициллин.

Так что история антибитиков началась не с Флеминга, нет. Флеминг не был первым, кто заметил антибактериальные свойства плесени. Плесень применяли для лечения ран древние египтяне. И, хотя в Древнем Египте не было научной опоры многим медицинским действиям, не стоит забывать о замечательной наблюдательности древних врачевателей.

Эрнест Дюшен

Именно он первый описал антибактериальные свойства пенициллина. О его жизни известно совсем немного. Он родился в Париже, обучался в военной медицинской школе в Лионе, куда поступил в двадцатилетнем возрасте.
Дюшен был просто очарован микробами. Еще бы! Открытие болезнетворных свойств у микробов, труды Луи Пастера, просто перевернули мировоззрение медиков того времени. Эрнест Дюшен решил написать диссертацию под руководством профессора микробиологии Габриэля Ру. Габриэль Ру тогда руководил лабораторией, которая отвечала за качество водоснабжения в Лионе. Диссертационная работа Дюшена была посвящена следующему наблюдению: водопроводная вода никогда не заплесневала, но плесень могла хорошо расти в дистилированной воде. Первым возникло предположение, что бактерии не дают плесени расти в водопроводной воде.

Эрнест выращивал Penicillum glaucum. Эта плесень применяется для изготовления сыров горгондзола и стилтон. Он помещал ее в емкости с водопроводной и кипяченой водой. Потом он добавил возбудителя брюшного тифа и кишечную палочку — плесень быстро умерла. Выяснилось, что бактерии в воде убивают плесень. Дюшен начал задавать разные условия: температура, кислотность среды, но плесень погибала не всегда. Иногда победа оставалась за грибком.
Опять возник вопрос: а плесень может чем то «ответить» бактерии? Может ли она с ними бороться? В эксперименте на морских свинках было обнаружено снижение вирулентности бактерий. Более того, путем инъекции плесени Дюшен смог вылечить животное. Подобный эксперимент проведет Александр Флеминг, которого нередко и называют открывателем пенициллина.

О том, как был открыт пенициллин Флемингом, написано очень много. Так почему же Дюшенна не помнят как открывателя пенициллина? На это есть несколько причин. Ну, во-первых он исследовал Penicillum glausum, в отличие от другого вида плесени Penicillum notanum. Плесень, которая фактически этот пенициллин и синтезирует. Уже позднее было установлено, что Penicillum glausum продуцирует другой, более слабый антибиотик — патулин (кстати, токсичен и работает в высоких концентрациях, поэтому не применяется). Вероятно, если бы не здоровье молодого ученого, а также недолгий жизненный путь (умер от туберкулеза в 1912 году, потеряв задолго до этого от того же туберкулеза свою жену), открытие пенициллина принадлекжало бы ему.

Александр Флеминг

Но факт есть факт. Автором и первооткрывателем пенициллина был Александр Флеминг. Датой открытия самого известного антибиотика является 3 сентября 1928 года (День рождения пенициллина). Флеминг к тому времени был уже широко известен, имел репутацию блестящего исследователя.
Открытию пенициллина человечество обязано все же этому шотландскому биохимику. После Первой мировой войны, в которой «отец пенициллина» служил военным врачом, Флеминг не мог смириться с тем, что большое количество солдат погибали от инфекционных осложнений. В 1918 году он вернулся с войны работать в бактериологическую лабораторию больницы Св. Марии, где он работал до этого (и где проработает до самой смерти). В 1922 году произошел случай, больше конечно похожий на басню, но тем не менее на шесть лет опередивший открытие пенициллина. Простуженный Флеминг случайно чихнул на чашку Петри, где находились бактериальные колонии. Через несколько дней он обнаружил замедленный рост бактерий (Micrococcus lysodeikticus) на некоторых местах. Так был открыт лизоцим (мурамидаза). Это гидролитический фермент расщепляет стенки бактерий, то есть обладающий бактерицидными свойствами. Много его в выделениях носовой слизи, слюне (почему животные могут зализывать раны), слезной жидкости. Много его и в грудном молоке (причем заметно больше, чем в коровьем и при кормлении со временем концентрация его не уменьшается, а возрастает). Конечно, когда будет открыт пенициллин, интерес к лизоциму заметно упадет, вплоть до открытия лизоцима куриного белка.

Как отмечал в последующем сам Александр Флеминг, открытию пенициллина помог случай. Работая в лаборатории и изучая фермент лизоцим, Флеминг не отличался порядком на рабочем месте (хотя порядок у ученых свой!). Как это нередко бывает с гениями (вспомнить хотя бы рабочий стол Эйнштейна), в лаборатории ученого был сущий бардак. Флеминг, вернувшись после месяца отсутствия заметил, что на одной чашке с культурами стафилококка появились плесневые грибы. Колония грибка растворила высеянную культуру . Плесень принадлежала к роду пеницилловых, поэтому выделенное вещество потом и назвали пенициллином.

Название пенициллина переводится как «кисточка для письма», подобная схожесть видна под микроскопом

Говард Флори

И хотя, когда речь заходит об открытии пенициллина, вспоминают Александра Флеминга, практическую пользу из этого открытия извлекли другие ученые, в частности фармаколог Говрад Уолтер Флори. В 1938 году Флори, работая совместно с Эрнестом Чейном и Норманом Хитли в Оксфортском университете, в Англии, начали проводить эксперименты с антибактериальными свойствами грибка Penicillium notatum. О свойствах грибка подавлять бактериальный рост писал в своих трудах Флеминг.
Первым пациентом, которому был назначен пенициллин, был Альберт Александр, лондонский полицейский. Серезная инфекция, затронувшая часть лица, периорбитальной области глаза, волосистой части головы, началась с небольшого укола шипом розы. Флори и Чейн дали больному пенициллин и в течение первых суток намечалась хорошая динамика. Однако, определить оптимальную дозу лекарства не удалось (ее еще тогда и не знали) и инфекционный процесс все же привел к смерти пациента. Эксперименты продолжились, препарат назначали серьезно больным детям с впечатляющим эффектом. Сейчас считают, что труды Флори и Чейна спасли более 80 миллионов человек.

Эрнест Чейн

А теперь стоит сказать, об упоминавшемся ранее, биохимике Эрнесте Борисе Чейне. Родившийся в еврейской семье и проживая в Германии, был вынужден с приходом к власти Гитлера эмигрировать в Англию. Как сополучатель в будущем Нобелевской премии за открытие пенициллина, Чейн был за ту часть работы, в которой он показал строение пенициллина и успешно выделил активное вещество. Чтобы выделить пенициллин, для одной терапевтической дозы, было необходимо переработать около 500 литров питательного бульона с плесенью!
Чейн писал: «Трудности, с которыми столкнулся Флеминг, только подстегнули мой интерес к обнаруженному Флемингом пенициллину. Я сказал Флори, что мы найдем способ хотя бы частично очистить пенициллин, несмотря на его нестойкость».
В 1938 году Чейн и его коллега Норман Хитли быстро пришли к выводу, что пенициллин, в отличие от лизоцима — это не фермент, а небольшая молекула органического происхождения.
Небольшие размеры молекулы обнадежили исследователей: будет легко расшифровать молекулярную структуру и синтезировать его. О том, что будет легко, ученые ошибались…
Было установлено, что в состав пенициллина входит комплекс структур, которые в последующем назвали бета-лактамами.


О возможности существования подобной структуры Чейн предполагал и ранее, но вопрос решился только в 1949-м.

Когда при помощи рентгенологической кристаллографии Дороти Ходжкин определила расположение атомов в кристаллической решетке пенициллина. Именно после 1949 года, после определения точной молекулярной структуры пенициллина, стало возможным массовое дешевеое производство препарата.
Кстати, Дороти Ходжкин тоже получила Нобелевскую премию за исследование кристаллической решетки в рентгеновских лучах, в 1964 году. Эта выдающаяся женщина заложила основы метода, с помощью которого стало возможным исследование структуры ДНК (программа «Геном человека»).

Чейн и Флори для получения пенициллина в концентрированном виде, применили новую тогда методику лиофилизации. Раствор пенициллина замораживался, а затем при низкой температуре и низком давлении вода изгонялась, оставляя ценный материал.

Penicillium chrysogenium (notatum): как нашли самый «пенициллиновый» грибок

С начала Второй мировой войны резко возросла потребность в пенициллине. Необходимость в таком лекарстве была очевидна.
В 1940 году группа ученых Оксфордского университета (которую и возглавляли Флори и Чейн) достала из запасников пенициллин Флеминга и начала искать способы его производства в большом количестве.
Так как начались бомбежки Лондона и возник риск оккупации, ученые отправились на переговоры в Нью-Йорк (вероятность высадки немцев была так велика, что Чейн даже пропитал свой пиджак целебной плесенью, объяснив коллегам: в случае чего спасать в первую очередь этот пиджак).
В нью-Йорке приехавших ученых встретили без особого энтузиазма: выработка пенициллина редко превышала 4 единицы действия на 1 миллилитр питательной среды. Это очень мало: на флаконе с пенициллином, к примеру, написано «1 000 000 ЕД». Для одной дозы препарата нужно было переработать 250 литров бульона.
Сразу обрисовалась цель: найти самый «урожайный» грибок. Сначала ученые отправились в Пеорию (штат Иллинойс), где находилась исследовательская лаборатория по изучению метаболизма плесени. Сотрудники лаборатории собрали значительную коллекцию, но лишь немногие штаммы плесени могли производить пенициллин.
Начали подключать знакомых: чтобы присылали образцы почвы, плесневых зерен, фруктов и овощей. Наняли одну женщину, чтобы она обходила магазины, пекарни, сыроварни, отыскивая новые образцы сине-зеленой плесени. Ее звали мисс Мэри Хант, за хорошую работу прозванная «Плесневелая Мэри».
Ход истории изменила дыня кантатула, на которой поселился сине-зеленый грибок. Эта плесень производила 250 единиц пенициллина на миллилитр питательной среды. Один из мутировавших из нее штаммов стал производить 50000 единиц! Все штаммы, продуцирующие пенициллин на сегодня — это потомки той самой плесени, которую нашли в 1943 году. Это был грибок Penicillium chrysogenium, ранее называвшийся Penicillium notatum.
С того момента и началась эпоха промышленного производства пенициллина.

Когда в 1945 году Флемингу, Флори и Чейну вручали Нобелевскую премию по физиологии и медицине, Флеминг сказал: «Говорят, что это я изобрел пенициллин. Но человек не мог его изобрести — это вещество создано природой. Я не изобретал пенициллин, я всего лишь обратил на него внимание людей и дал ему название» .

Флеминг, Чейн и Флори на вручении Нобелевской премии

Если вы нашли опечатку в тексте, пожалуйста, сообщите мне об этом. Выделите фрагмент текста и нажмите Ctrl+Enter .