Военный металлоискатель имп. Средства инженерной разведки и разминирования. Электронная схема миноискателя ИМП

Мультивибратор на транзисторах – это генератор прямоугольных сигналов. Ниже на фото одна из осциллограмм симметричного мультивибратора.

Симметричный мультивибратор генерирует прямоугольные импульсы со скважностью два. Подробнее про скважность можно прочитать в статье генератор частоты . Принцип действия симметричного мультивибратора мы будем использовать для поочередного включения светодиодов.


Схема состоит из:

– двух КТ315Б (можно с любой другой буквой)

– двух конденсаторов емкостью по 10 микроФарад

– четырех , два по 300 Ом и два по 27 КилоОм

– двух китайских светодиодов на 3 Вольта


Вот так устройство выглядит на макетной плате :


А вот так он работает:

Для изменения длительности моргания светодиодов можно поменять значения конденсаторов С1 и С2, или резисторов R2 и R3.

Существуют также другие разновидности мультивибраторов. Подробнее о них можно прочитать . Также там описан принцип работы симметричного мультивибратора.

Кому лень собирать такое устройство, можно приобрести готовое;-) На Алике я даже находил готовое устройство. Его можете глянуть по этой ссылке.

Вот видео, где подробно описывается, как работает мультивибратор:

Мультивибратор на транзисторах – это генератор прямоугольных сигналов. Ниже на фото одна из осциллограмм симметричного мультивибратора.

Симметричный мультивибратор генерирует прямоугольные импульсы со скважностью два. Подробнее про скважность можно прочитать в статье генератор частоты . Принцип действия симметричного мультивибратора мы будем использовать для поочередного включения светодиодов.


Схема состоит из:

– двух КТ315Б (можно с любой другой буквой)

– двух конденсаторов емкостью по 10 микроФарад

– четырех , два по 300 Ом и два по 27 КилоОм

– двух китайских светодиодов на 3 Вольта


Вот так устройство выглядит на макетной плате :


А вот так он работает:

Для изменения длительности моргания светодиодов можно поменять значения конденсаторов С1 и С2, или резисторов R2 и R3.

Существуют также другие разновидности мультивибраторов. Подробнее о них можно прочитать . Также там описан принцип работы симметричного мультивибратора.

Кому лень собирать такое устройство, можно приобрести готовое;-) На Алике я даже находил готовое устройство. Его можете глянуть по этой ссылке.

Вот видео, где подробно описывается, как работает мультивибратор:

Мультивибраторы – это еще одна форма осцилляторов. Генератор представляет собой электронную схему, которая способна поддерживать сигнал переменного тока на выходе. Он может генерировать прямоугольные, линейные или импульсные сигналы. Для колебания генератор должен удовлетворять двум условиям Баркгаузена:

Т коэффициент усиления контура он должен быть немного больше единицы.

Сдвиг фазы цикла должен быть 0 градусов или 360 градусов.

Для выполнения обоих условий генератор должен иметь некоторую форму усилителя, и часть его выхода должна быть регенерирована на вход. Если коэффициент усиления усилителя меньше единицы, схема не будет колебаться, а если она больше единицы, схема будет перегружена и будет давать искаженную форму волны. Простой генератор может генерировать синусоидальную волну, но не может генерировать прямоугольную волну. Прямоугольная волна может быть сформирована с помощью мультивибратора.

Мультивибратор – это форма генератора, которая имеет две ступени, благодаря которым мы можем получить выход из любого из состояний. Это в основном две схемы усилителя, скомпонованные с регенеративной обратной связью. При этом ни один из транзисторов не проводит одновременно. Одновременно только один транзистор проводит, а другой находится в выключенном состоянии. Некоторые схемы имеют определенные состояния; состояние с быстрым переходом называется процессами переключения, где происходит быстрое изменение тока и напряжения. Это переключение называется триггерным. Следовательно, мы можем запустить цепь внутри или снаружи.

Схемы имеют два состояния.

Одним из них является стабильное состояние, в котором цепь остается навсегда без какого-либо запуска.
Другое состояние является нестабильным: в этом состоянии схема остается в течение ограниченного периода времени без какого-либо внешнего запуска и переключается в другое состояние. Следовательно, использование многовибарторов осуществляется в двух состояниях цепей, таких как таймеры и триггеры.

Нестабильный мультивибратор с использованием транзистора

Это свободно работающий генератор, который непрерывно переключается между двумя нестабильными состояниями. При отсутствии внешнего сигнала транзисторы поочередно переключаются из состояния отключения в состояние насыщения на частоте, определяемой постоянными времени RC цепей связи. Если эти постоянные времени равны (R и C равны), то будет генерироваться прямоугольная волна с частотой 1 / 1,4 RC. Следовательно, нестабильный мультивибратор называется генератором импульсов или генератором прямоугольных импульсов. Чем больше значение базовой нагрузки R2 и R3 по отношению к нагрузке коллектора R1 и R4, тем больше коэффициент усиления по току и острее будет край сигнала.

Основным принципом работы нестабильного мультивибратора является небольшое изменение электрических свойств или характеристик транзистора. Это различие приводит к тому, что один транзистор включается быстрее, чем другой, когда питание подается в первый раз, что вызывает колебания.

Схема Объяснение

нестабильный мультивибратор состоит из двух поперечных связи усилителей RC.
Схема имеет два нестабильных состояния
Когда V1 = НИЗКИЙ и V2 = ВЫСОКИЙ, тогда Q1 ВКЛ и Q2 ВЫКЛ
Когда V1 = ВЫСОКИЙ и V2 = НИЗКИЙ, Q1 ВЫКЛ. и Q2 ВКЛ.
При этом R1 = R4, R2 = R3, R1 должно быть больше, чем R2
C1 = C2
При первом включении цепи ни один из транзисторов не включен.
Базовое напряжение обоих транзисторов начинает увеличиваться. Любой из транзисторов включается первым из-за разницы в легировании и электрических характеристиках транзистора.

Рис. 1: Принципиальная схема работы транзисторного нестабильного мультивибратора

Мы не можем сказать, какой транзистор проводит первым, поэтому мы предполагаем, что Q1 проводит первым, а Q2 выключен (C2 полностью заряжен).

Q1 проводит, а Q2 отключен, следовательно, VC1 = 0 В, так как весь ток на землю из-за короткого замыкания Q1, и VC2 = Vcc, так как все напряжение на VC2 падает из-за разомкнутой цепи TR2 (равно напряжению питания).
Из-за высокого напряжения VC2 конденсатор C2 начинает заряжаться через Q1 через R4, а C1 начинает заряжаться через R2 через Q1. Время, необходимое для зарядки C1 (T1 = R2C1), больше, чем время, необходимое для зарядки C2 (T2 = R4C2).
Так как правая пластина C1 подключена к базе Q2 и заряжается, значит, у этой пластины высокий потенциал, и когда она превышает напряжение 0,65 В, она включается Q2.
Поскольку C2 полностью заряжен, его левая пластина имеет напряжение -Vcc или -5V и подключена к базе Q1. Следовательно, он выключается Q2
TR Теперь TR1 выключен, и Q2 проводит, следовательно, VC1 = 5 В и VC2 = 0 В. Левая пластина C1 ранее находилась под напряжением -0,65 В, которое начинает подниматься до 5 В и подключается к коллектору Q1. C1 сначала разряжается от 0 до 0,65 В, а затем начинает заряжаться через R1 через Q2. Во время зарядки правая пластина С1 имеет низкий потенциал, который выключает Q2.
Правая пластина C2 подключена к коллектору Q2 и предварительно находится на + 5В. Таким образом, C2 сначала разряжается от 5 В до 0 В, а затем начинает заряжаться через сопротивление R3. Левая пластина C2 во время зарядки находится под высоким потенциалом, который включает Q1, когда достигает напряжения 0,65 В.

Рис. 2: Принципиальная схема работы транзисторного нестабильного мультивибратора

Теперь Q1 проводит, а Q2 выключен. Вышеуказанная последовательность повторяется, и мы получаем сигнал на обоих коллекторах транзистора, который не в фазе друг с другом. Для получения идеальной прямоугольной волны любым коллектором транзистора мы принимаем как сопротивление коллектора транзистора, базовое сопротивление, то есть (R1 = R4), (R2 = R3), а также то же значение конденсатора, что делает нашу схему симметричной. Следовательно, рабочий цикл для низкого и высокого значения выходного сигнала является тем же, который генерирует прямоугольную волну
Constant Постоянная времени формы сигнала зависит от базового сопротивления и коллектора транзистора. Мы можем рассчитать его период времени по: Постоянная времени = 0.693RC

Принцип действия мультивибратора на видео c объяснением

В этом видеоуроке канала Паяльник TV покажем, как взаимосвязаны элементы электрической цепи и познакомимся с происходящими в ней процессами. Первой схемой, на основе которой будет рассмотрен принцип работы, является схема мультивибратора на транзисторах. Схема может находиться в одном из двух состояний и периодически переходит из одного в другое.

Анализ 2-х состояний мультивибратора.

Всё, что мы наблюдаем сейчас, это два светодиода, которые поочерёдно мигают. Почему это происходит? Рассмотрим сначала первое состояние.

Первый транзистор VT1 закрыт, а второй транзистор полностью открыт и не препятствует протеканию коллекторного тока. Транзистор в этот момент находится в режиме насыщения, что позволяет снизить на нём падение напряжения. И поэтому правый светодиод горит в полную силу. Конденсатор C1 в первый момент времени был разряжен, и ток беспрепятственно проходил на базу транзистора VT2, полностью открывая его. Но спустя мгновение конденсатор начинает быстро заряжаться базовым током второго транзистора через резистор R1. После того, как он полностью зарядится (а как известно, полностью заряженный конденсатор не пропускает ток), то транзистор VT2 вследствие этого закрывается и светодиод гаснет.

Напряжение на конденсаторе C1 равно произведению базового тока на сопротивление резистора R2. Перенесемся во времени назад. Пока транзистор VT2 был открыт и правый светодиод горел, конденсатор C2, заряженный ранее в предыдущем состоянии, начинает медленно разряжаться через открытый транзистор VT2 и резистор R3. Пока он не разрядился, напряжение на базе VT1 будет отрицательным, которое полностью запирает транзистор. Первый светодиод не горит. Получается, что к моменту затухания второго светодиода конденсатор C2 успевает разрядиться и переходит в готовность пропустить ток на базу первого транзистора VT1. К тому моменту, когда перестаёт гореть второй светодиод, загорается первый светодиод.

А во втором состоянии происходит всё то же самое, но наоборот, транзистор VT1 открыт, VT2 закрыт. Переход в другое состояние происходит тогда, когда конденсатор C2 разряжается, напряжение на нём уменьшается. Разрядившись полностью, он начинает заряжаться в обратную сторону. Когда напряжение на переходе база-эмиттер транзистора VT1 достигнет напряжения, достаточного для его открывания, примерно 0,7 В, этот транзистор начнёт открываться и первый светодиод загорится.

Снова обратимся к схеме.

Через резисторы R1 и R4 происходит зарядка конденсаторов, а через R3 и R2 происходит разрядка. Резисторы R1 и R4 ограничивают ток первого и второго светодиода. От их сопротивления зависит не только яркость свечения светодиодов. Они также определяют время зарядки конденсаторов. Сопротивление R1 и R4 подбирается намного меньшее, чем R2 и R3, чтобы зарядка конденсаторов происходила быстрее, чем их разрядка. Мультивибратор используется для получения прямоугольных импульсов, которые снимаются с коллектора транзистора. При этом нагрузка подключается параллельно одному из коллекторных резисторов R1 или R4.

На графике представлены прямоугольные импульсы, вырабатываемые данной схемой. Одна из областей называется фронт импульса. Фронт имеет наклон, и чем больше будет время зарядки конденсаторов, тем этот наклон будет больше.


Если в мультивибраторе использованы одинаковые транзисторы, конденсаторы одинаковой ёмкости, и если резисторы имеют симметричные сопротивления, то такой мультивибратор называется симметричным. Он имеет одинаковую длительность импульсов и длительность пауз. А если имеются различия в параметрах, то мультивибратор будет несимметричным. Когда мы подключаем мультивибратор к источнику питания, то в первый момент времени оба конденсатора разряжены, а значит на базу обоих конденсаторов поступит ток и появится неустановившийся режим работы, при котором должен открыться лишь один из транзисторов. Так как эти элементы схемы имеют некоторые погрешности номиналов и параметров, один из транзисторов откроется первым, и мультивибратор запустится.

Если вы захотите смоделировать данную схему в программе Multisim, то нужно выставить номиналы резисторов R2 и R3 так, чтобы их сопротивления отличались хотя бы на десятую часть Ома. То же самое проделайте с ёмкостью конденсаторов, иначе мультивибратор может не запуститься. При практической реализации данной схемы я рекомендую осуществлять питание напряжением от 3 до 10 Вольт, а параметры самих элементов сейчас вы узнаете. При условии, что используется транзистор КТ315. Резисторы R1 и R4 не оказывают влияния на частоту импульсов. В нашем случае они ограничивают ток светодиода. Сопротивление резисторов R1 и R4 можно взять от 300 Ом до 1кОм. Сопротивление резисторов R2 и R3 от 15 кОм до 200 кОм. Ёмкость конденсаторов от 10 до 100 мкФ. Представим таблицу со значениями сопротивлений и ёмкостей, в которой приведены примерная ожидаемая частота импульсов. То есть, чтобы получить импульс длительностью 7 секунд, то есть, длительность свечения одного светодиода, равная 7 секундам, нужно использовать резисторы R2 и R3 сопротивлением 100 кОм и конденсатора ёмкостью 100 мкФ.

Вывод.

Времязадающими элементами данной схемы являются резисторы R2, R3 и конденсаторы C1 и C2. Чем меньше их номиналы, тем чаще будут переключаться транзисторы, и тем чаще будут мерцать светодиоды.

Мультивибратор можно реализовать не только на транзисторах, но и на базе микросхем. Оставляйте свои комментарии, не забывайте подписаться на канал «Паяльник TV» на ютубе, чтобы не пропустить новые интересные видео.

Еще интересная о радиопередатчике.

ТЕМА: Средства инженерной разведки и разминирования

ВРЕМЯ: 2 часа

МЕСТО ПРОВЕДЕНИЯ:__________________________________________

УЧЕБНЫЕ ЦЕЛИ:

1. Дать понятия о средствах инженерной разведки и разминирования

2. Научить личный состав порядку развертывания и работе со средствами инженерной разведки.

УЧЕБНЫЕ ВОПРОСЫ:

4. Миноискатель ММП. Назначение, ТТХ, состав, порядок работы с миноискателем.

Ход занатия:

ВВОДНАЯ ЧАСТЬ-5мин

Согласно проведенным оценкам, ежегодно в мире производится от 5 до 10 млн. мин. К настоящему времени в 64 странах их установлено и сохраняется в боевом положении примерно 110 млн. Только в Афганистане установлено до 10 млн. мин. На территории Боснии их установлено около 2 млн. штук, а с учетом территории Хорватии и Сербии это количество возрастает до 3,7 млн. штук. По заявлению Международного Красного Креста, в Мозамбике все главные дороги представляют опасность для передвижения, поскольку в течение 18-легней гра­жданской войны на них было установлено 2 млн. мин.

В соответствии с докладом ООН ежегодно в мире на минах гибнет 26000 человек и приблизительно столько же получают ранения. Жертвами в основном становится гражданское население, до половины которых составляют дети.

Разминирование является весьма медленным и трудоемким процессом. Снятие противопехотной мины, стоимость производства которой составляет 3доллара США, обходится в 300-1000 долларов США. В течение года во всем мире снимается не более 200-300 тысяч мин, а заново устанавливается более миллиона новых мин. В среднем при разминировании каждых 5 тысяч мин погибнет 1 сапер и 2 получают ранения. Даже если считать, что мины устанавливаться не будут, расходы на сплошное разминирование во всех странах составят 33 млрд. долларов США, и на него при нынешних темпах работ потребуется 500 лет.

Опыт боевых действий в Афганистане, Чечне показывает, что успех выполнения задач по поиску мин и фугасов, а также складов оружия в полной мере зависит от того, есть ли в подразделении инженерных войск специалисты, до тонкости изучившие демаскирующие признаки объектов поиска и умело применяющие средства разведки. Так, например, при обеспечении боевых действий в зеленой зоне провинции Парван в феврале 1984 года составом группы поиска с помощью искателя ИМБ был обнаружен склад с оружием и боеприпасами на глубине 2 м. Склад обнаружил младший сержант Р. Кумурзин, в совершенстве владевшый этим прибором. На территории Чечни по состоянию на 05.09.96 года силами частей и подразделений инженерных войск выполнены следующие объемы задач:

1. Разведано и разминировано:

- местности - 54 тысячи га,

- зданий и сооружений - 1060 тысяч га,

в том числе жилых домов - 317,

школ - 47,

больниц - 32,

детсадов - 10,

объектов - 793,

трасс ЛЭП - 780 км,

дорог - 775 км.

2. Всего обнаружено и уничтожено 470 тысяч взрывоопасных предметов. В том числе:

- инженерных мин - 11600,

- артиллерийскихснарядов - 99200,

Минометных мин - 75400,

ПТУР-1280,

Гранат - 86560,

Авиабомб - 195,

Прочих ВОП-195925.

I .МИНОИСКАТЕЛЬ ИМП.НАЗНАЧЕНИЕ, ТТХ, СОСТАВ, ПОРЯДОКРАБОТЫ- 25 мин

Миноискатель ИМП.

Индукционный миноискатель полупроводниковый (ИМП) служит для поиска металлических предметов, находящихся в грунте.

Принцип работы

В поисковом элементе расположены две приемные катушки и одна генераторная катушка. Генераторная катушка излучает электромагнитные волны, принимаемые приемными катушками – суммарная ЭДС в них ровна нулю. При внесении металлических предметов в поле волны отражаются от них – появляется сигнал разбалансирования, прослушиваемый в телефонах.

Глубина обнаружения не менее (см): - ПТМ

ППМ

……………………80

……………………...8

Ширина поиска, зона (см): - ПТМ

ППМ

…………………….30

…………………….20

Источник питания (Э 373) (шт)

……………………4

Время непрерывной работы (час)

…………………100

Масса поисковой системы (кг)

……………………2.4

Масса миноискателя (кг)

……………………6.6

Рис. 1 Миноискатель ИМП. 1-головные телефоны; 2-усилительный блок; 3-поисковый элемент; 4-штанга.

Порядок работы

1. Собирать штангу из алюминиевых колен;

2. Подключить к усилительному блоку штекера головных телефонов и соединительный кабель поискового элемента;

3. Надеть телефоны, при этом одна из раковин не должна закрывать ухо, чтобы слушать приказания;

4. Перевести тумблер в положение «ВКЛ» и проверить работоспо-собность (писк, установка тональности и чувствительности);

5. Непрерывно перемещая перед собой вправо и влево, двигаться вперед, держа элемент 5 – 7 сантиметров от земли.

При возрастании сигнала – больше металла.

Изделие ПР – 507 предназначен для поиска и обнаружения в грунте, воде и снегу металлических и металлосодержащих объектов.

II .МИНОИСКАТЕЛЬ ИМП-2.НАЗНАЧЕНИЕ, ТТХ, СОСТАВ, ПОРЯДОКРАБОТЫ- 25 мин

Миноискатель ИМП – 2

Основные тактико-технические характеристики

Глубина обнаружения в грунте не более (см): типа ТМ – 62М

Типа ПМН – 2

Минимальное расстояние между двумя миноискателями (м)...

Источник питания (8РЦ83) (шт)………………………………….

Время непрерывной работы (час)………………………………...

Масса изделий в укладочном чемодане (кг)……………………..


Рис. 2. Миноискатель ИМП – 2. 1-упоковочный переносной ящик; 2-сборный алюминиевой щуп; 3-поисковый элемент; 4-телескопическая штанга; 5-блок питания; 6-блок обработки сигнала; 7-головные телефоны.

Принцип действия индукционного миноискателя основан на фиксации вторичного поля вихревых токов, возникающих в металлических предметах под воздействием первичного импульсного электромагнитного поля.

III .МИНОИСКАТЕЛЬ MМП.НАЗНАЧЕНИЕ, ТТХ, СОСТАВ, ПОРЯДОКРАБОТЫ- 20 мин

Миноискатель ММП.

Основные тактико-технические характеристики

Глубина обнаружения мин (см): - ПТМ в металлическом корпусе

ПТМ в не металлических корпусах……………………………….

ППМ в корпусах из любого материала……………………………

До 50

До 15

До 7

Время непрерывной работы (час)…………………………………..

Многоканальный (радиоволновой, индукционный, совмещенный) миноискатель полупроводниковый переносной предназначен для поиска противотанковых и противопехотных мин в корпусах из любых металлов и материалов.


Рис. 3. Миноискатель ММП: 1-поисковый элемент; 2-щуп; 3-штанга; 4-блок обработки сигналов; 5-головные телефоны

Принцип действия ММП основан на совмещении двух способов:

1. Радиоволнового – зондирующие сигналы излучаются передающими антеннами, отражаются от поверхности грунта, принимаются приемными антеннами и детектируются.

2. Индукционного - улавливается отраженная электромагнитная волна с характерными для Ме характеристиками (амплитуда, фаза).

Порядок работы

При разведке местности поисковый элемент миноискателя перемещают взмахами влево – вправо параллельно поверхности грунта на высоте 10 сантиметров со скоростью 0,6 – 0,9 м/с (2 – 3 км/ч). После каждого взмаха, поисковый элемент перемещают вперед на 1/3 его длинны. Появление короткого сигнала указывает на наличие постороннего предмета.

IV .МИНОИСКАТЕЛЬ РВМ-2.НАЗНАЧЕНИЕ, ТТХ, СОСТАВ, ПОРЯДОКРАБОТЫ- 20 мин

Миноискатель РВМ – 2.

Основные тактико-технические характеристики

Глубина обнаружения мин (см): - ПТМ……………….

ППМ………………

до 10

до 5

Ширина зоны обнаружения (см): - ПТМ………………

ППМ………………

до 20

до 15

Масса миноискателя (кг)………………………………...

Масса поисковой части (кг)……………………………..

Время непрерывной работы (час)……………………….

Температурный диапазон применения (О С)……………

от +50 до –50

Расчет (чел)……………………………………………….

Миноискатель РВМ – 2 предназначен для поиска противотанковых и противопехотных мин с корпусами из любых материалов.


Рис. 4 . Миноискатель РВМ – 2: 1-поиисковый элемент; 2-держатель; 3-телескопическая штанга; 4-цанговый зажим; 5-блок обработки сигналов; 6-головные телефоны.

Принцип действия основан на фиксации различия диэлектрических проницаемости ВВ, материала корпуса мины и среды, в которой установлена мина. Зондирующие сигналы излучаются передающими антеннами, отражаются от поверхности грунта, принимаются приемными антеннами и детектируются. При перемещении поискового элемента над миной в телефонах появляется звуковой сигнал.

Подготовка к работе

1. Собрать миноискатель;

2. Подключить головные телефоны к блоку обработки сигналов;

3. Вставить источники питания;

4. Проверить работоспособность.

Порядок работы

Поиск мин в зависимости от состояния грунта производится на одном из двух режимов поиска: « I » или «П». Режим « I » применяется для поиска мин, в снег, а так же под слоем воды, а режим «П» в остальных случаях.

Продвигаясь в заданном направлении, перемещать поисковый элемент параллельно земле на высоте 3 – 7 сантиметров плавными взмахами, следя за тем, чтобы не осталось необследованных участков. При появлении в телефонах сигнала остановиться и уточнить местонахождение объекта

ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ-5 мин

Подвожу итог занятиям, отвечаю на поставленные вопросы, даю задание на самоподготовку.

Конспект – Средства инженерной разведки и разминирования

Россия, 2000 - 7 с.

Дисциплина – Инженерная подготовка

Миноискатель ИМП. Назначение, ТТХ, состав, порядок работы с миноискателем.

Миноискатель ИМП-2. Назначение, ТТХ, состав, порядок работы с миноискателем.

Миноискатель ММП. Назначение, ТТХ, состав, порядок работы с миноискателем.

Миноискатель ММП. Назначение, ТТХ, состав, порядок работы с миноискателем.