Как определить ниобий в домашних условиях. Мировой рынок ниобия. Нужна помощь по изучению какой-либы темы

Физические свойства ниобия

Ниобий -- блестящий серебристо-серый металл.

Элементарный ниобий - чрезвычайно тугоплавкий (2468°C) и высококипящий (4927°C) металл, очень стойкий во многих агрессивных средах. Все кислоты, за исключением плавиковой, не действуют на него. Кислоты-окислители «пассивируют» ниобий, покрывая его защитной окисной пленкой (№205). Но при высоких температурах химическая активность ниобия повышается. Если при 150...200°C окисляется лишь небольшой поверхностный слой металла, то при 900...1200°C толщина окисной пленки значительно увеличивается.

Кристаллическая решетка Ниобия объемно центрированная кубическая с параметром а = 3,294A.

Чистый металл пластичен и может быть прокатан в тонкий лист (до толщины 0, 01 мм.) в холодном состоянии без промежуточного отжига.

Можно отметить такие свойства ниобия как высокая температура плавления и кипения, более низкая работа выхода электронов по сравнению с другими тугоплавкими металлами -- вольфрамом и молибденом. Последнее свойство характеризует способность к электронной эмиссии (испусканию электронов), что используется для применения ниобия в электровакуумной технике. Ниобий также имеет высокую температуру перехода в состояние сверхпроводимости.

Плотность 8,57 г/см3 (20 °С); tпл 2500 °С; tкип 4927 °С; давление пара (в мм рт. ст.; 1 мм рт. ст.= 133,3 н/м2) 1·10-5 (2194 °С), 1·10-4 (2355 °С), 6·10-4 (при tпл), 1·10-3 (2539 °С).

При обычной температуре ниобий устойчив на воздухе. Начало окисления (плёнки побежалости) наблюдается при нагревании металла до 200 -- 300°С. Выше 500° происходит быстрое окисление с образованием окисла Nb2O5.

Теплопроводность в вт/(м·К) при 0°С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см·сек·°С) 0,125 и 0,156. Удельное объемное электрическое сопротивление при 0°С 15,22·10-8 ом·м (15,22·10-6 ом·см). Температура перехода в сверхпроводящее состояние 9,25 К. Ниобий парамагнитен. Работа выхода электронов 4,01 эв.

Чистый Ниобий легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м2, то же в кгс/мм234,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7%. Твердость чистого Ниобиы по Бринеллю 450, технического 750-1800 Mн/м2. Примеси некоторых элементов, особенно водорода, азота, углерода и кислорода, сильно ухудшают пластичность и повышают твердость Ниобия.

Химические свойства ниобия

Ниобий особенно ценится за его устойчивость к действию неорганических и органических веществ.

Есть разница в химическом поведении порошкообразного и кускового металла. Последний более устойчив. Металлы на него не действуют, даже если нагреть их до высоких температур. Жидкие щелочные металлы и их сплавы, висмут, свинец, ртуть, олово могут находиться в контакте с ниобием долго, не меняя его свойств. С ним ничего не могут поделать даже такие сильные окислители, как хлорная кислота, «царская водка», не говоря уж об азотной, серной, соляной и всех прочих. Растворы щелочей на ниобий тоже не действуют.

Существует, однако, три реагента, которые могут переводить металлический ниобий в химические соединения. Одним из них является расплав гидроксида какого-либо щелочного металла:

4Nb+4NaOH+5О2 = 4NaNbO3+2H2О

Двумя другими являются плавиковая кислота (HF) или ее смесь с азотной (HF+HNO). При этом образуются фторидные комплексы, состав которых в значительной степени зависит от условий проведения реакции. Элемент в любом случае входит в состав аниона типа 2- или 2-.

Если же взять порошкообразный ниобий, то он несколько более активен. Например, в расплавленном нитрате натрия он даже воспламеняется, превращаясь в оксид. Компактный ниобий начинает окисляться при нагревании выше 200°С, а порошок покрывается окисной пленкой уже при 150°С. При этом проявляется одно из чудесных свойств этого металла -- он сохраняет пластичность.

В виде опилок при нагревании выше 900°С он полностью сгорает до Nb2O5. Энергично сгорает в токе хлора:

2Nb + 5Cl2 = 2NbCl5

При нагревании реагирует с серой. С большинством металлов он сплавляется с трудом. Исключение, пожалуй, составляют лишь два: железо, с которым образуются твердые растворы разного отношения, да алюминий, имеющий с ниобием соединение Al2Nb.

Какие же качества ниобия помогают ему сопротивляться действию сильнейших кислот--окислителей? Оказывается, это относится не к свойствам металла, а к особенностям его оксидов. При соприкосновении с окислителями на поверхности металла возникает тончайший (поэтому он и незаметен), но очень плотный слой оксидов. Этот слой встает неодолимой преградой на пути окислителя к чистой металлической поверхности. Проникнуть сквозь него могут только некоторые химические реагенты, в частности анион фтора. Следовательно, по существу металл окисляется, но практически результатов окисления незаметно из-за присутствия тонкой защитной пленки. Пассивность по отношению к разбавленной серной кислоте используют для создания выпрямителя переменного тока. Устроен он просто: платиновая и ниобиевая пластинки погружены в 0,05 м. раствор серной кислоты. Ниобий в пассивированном состоянии может проводить ток, если является отрицательным электродом -- катодом, т. е. электроны могут проходить сквозь слой оксидов только со стороны металла. Из раствора путь электронам закрыт. Поэтому, когда через такой прибор пропускают переменный ток, то проходит только одна фаза, для которой платина -- анод, а ниобий -- катод.

ниобий металл галоген

На самом деле ниобий, как и все остальные металлы, серый. Однако, используя пассивирующий слой оксида , мы делаем так, что наш металл светится красивейшими цветами . Но ниобий - это не просто металл, приятный глазу. Как и тантал, он устойчив во многих химических веществах и легко поддается формовке даже при низкой температуре.

Ниобий отличается тем, что высокий уровень коррозионной стойкости сочетается в нем с малым весом . Мы используем этот материал для производства вставок в монеты любых цветов, коррозионностойких выпарительных чаш для использования в технике для нанесения покрытий и формоустойчивых тиглей для выращивания алмазов. Благодаря высокому уровню биологической совместимости ниобий также используется в качестве материала для имплантатов. Высокая температура перехода также делает ниобий идеальным материалов для сверхпроводящих кабелей и магнитов.

Гарантированная чистота

Вы можете быть уверенными в качестве нашей продукции. В качестве исходного материала мы используем только чистейший ниобий. Так мы гарантируем вам чрезвычайно высокую чистоту материала .

Монеты и алмазы. Сферы применения ниобия.

Сферы применения нашего ниобия столь же разнообразны, как и свойства самого материала. Ниже мы кратко представим вам две из них:

Ценная и цветная

В самом выгодном свете наш ниобий предстает при производстве монет. В результате анодирования на поверхности ниобия образуется тонкий слой оксида. Из-за преломления света этот слой светится различными цветами. Мы можем влиять на эти цвета, изменяя толщину слоя. От красного до синего: возможны любые цвета.

Превосходная формуемость и стойкость

Высокая коррозионная стойкость и превосходная формуемость делают ниобий идеальным материалом для тиглей, используемых для производства искусственных поликристаллических алмазов (PCD). Наши ниобиевые тигли используются для высокотемпературного синтеза при высоком давлении.

Чистый ниобий, полученный плавкой

Мы поставляем наш ниобий, полученный плавкой, в виде листов, лент или прутков. Мы также можем изготавливать из него продукты сложной геометрии. Наш чистый ниобий обладает следующими свойствами:

  • высокая температура плавления, составляющая 2468 °C
  • высокая пластичность при комнатной температуре
  • рекристаллизация при температуре от 850 до 1300 °C
    (в зависимости от степени деформации и чистоты)
  • высокая стойкость в водных растворах и расплавах металлов
  • высокая способность к растворению углерода, кислорода, азота и водорода (риск повышения хрупкости)
  • сверхпроводимость
  • высокий уровень биологической совместимости

Хорош во всех отношениях: характеристики ниобия.

Ниобий относится к группе тугоплавких металлов. Тугоплавкие металлы - это металлы, температура плавления которых превышает температуру плавления платины (1772 °C) . В тугоплавких металлах энергия, связывающая отдельные атомы, чрезвычайно высока. Тугоплавкие металлы отличаются высокой температурой плавления в сочетании с низким давлением пара , высоким модулем упругости и высокой термической стабильностью . Кроме того, тугоплавкие металлы имеют низкий коэффициент теплового расширения . По сравнению с другими тугоплавкими металлами ниобий имеет относительно низкую плотность - всего 8,57 г/см 3 .

В периодической системе химических элементов ниобий находится в том же периоде, что и молибден. В связи с этим его плотность и температура плавления сравнимы с плотностью и температурой плавления молибдена. Как и тантал, ниобий подвержен водородной хрупкости. По этой причине термическая обработка ниобия выполняется в высоком вакууме, а не в водородной среде. И ниобий, и тантал также обладают высокой коррозионной стойкостью во всех кислотах и хорошей формуемостью.

Ниобий имеет самую высокую температуру перехода среди всех элементов, и она составляет -263,95 °C . При температуре ниже указанной ниобий является сверхпроводящим. Более того, ниобий обладает рядом крайне специфических свойств:

Свойства
Атомное число 41
Атомная масса 92,91
Температура плавления 2468 °C/2741 °K
Температура кипения 4744 °C/5017 °K
Атомный объем 1,80 · 10 -29 [м 3 ]
Давление пара при 1800 °C
при 2200 °C
5 · 10 -6 [Па]
4 · 10 -3 [Па]
Плотность при 20 °C (293 °K) 8,57 [г/см 3 ]
Кристаллическая структура объемноцентрированная кубическая
Постоянная кристаллической решетки 329 [пм]
Твердость при 20 °C (293 °K) деформированный
рекристаллизованный
110–180
60–110
Модуль упругости при 20 °C (293 °K) 104 [ГПa]
Коэффициент Пуассона 0,35
Коэффициент линейного теплового расширения при 20 °C (293 °K) 7,1 · 10 –6 [м/(м·K)]
Теплопроводность при 20 °C (293 °K) 53,7 [Вт/(м K)]
Удельная теплоемкость при 20 °C (293 °K) 0,27 [Дж/(г·K)]
Электропроводность при 20 °C (293 °K) 7,1 · 10 6
Удельное электрическое сопротивление при 20 °C (293 °K) 0,141 [(Ом·мм 2)/м]
Скорость звука при 20 °C (293 °K) Продольная волна
Поперечная волна
4920 [м/с]
2100 [м/с]
Работа выхода электрона 4,3 [эВ]
Сечение захвата тепловых нейтронов 1,15 · 10 -28 [м 2 ]
Температура рекристаллизации (продолжительность отжига: 1 час) 850–1300 °C
Сверхпроводимость (температура перехода) < -263,95 °C
/ < 9,2 °K

Термофизические свойства

Как и все тугоплавкие металлы, ниобий имеет высокую температуру плавления и относительно высокую плотность. Теплопроводность ниобия сравнима с теплопроводностью тантала, но ниже, чем у вольфрама. Коэффициент теплового расширения ниобия выше, чем у вольфрама, но все же значительно ниже, чем у железа или алюминия.

Теплофизические свойства ниобия изменяются при изменении температуры:

Коэффициент линейного теплового расширения ниобия и тантала

Удельная теплоемкость ниобия и тантала

Теплопроводность ниобия и тантала

Механические свойства

Механические свойства ниобия зависят прежде всего от его чистоты и, в частности, содержания кислорода, азота, водорода и углерода. Даже малые концентрации этих элементов могут оказывать значительное влияние. К другим факторам, оказывающим воздействие на свойства ниобия, относятся технология производства , степень деформации и термическая обработка .

Как и практически все тугоплавкие металлы, ниобий имеет объемноцентрированную кубическую кристаллическую решетку . Температура хрупко-вязкого перехода ниобия ниже комнатной. По этой причине ниобий крайне легко поддается формовке .

При комнатной температуре удлинение при разрыве составляет более 20 %. При увеличении степени холодной обработки металла повышается его прочность и твердость, но одновременно снижается удлинение при разрыве. Хотя материал теряет пластичность, он не становится хрупким.

При 104 ГПа и при комнатной температуре модуль упругости ниобия меньше, чем у вольфрама, молибдена или тантала. Модуль упругости падает с ростом температуры. При температуре около 1800 °С это значение составляет 50 ГПа.

Модуль упругости ниобия в сравнении с вольфрамом, молибденом и танталом

Благодаря высокой пластичности ниобий оптимально подходит для формовочных процессов , таких как гибка, штамповка, прессование или глубокая вытяжка. Для предотвращения холодной сварки рекомендуется использовать инструменты из стали или твердого металла. Ниобий с трудом поддается резке . Стружка плохо отделяется. В связи с этим мы рекомендуем использовать инструменты со стружкоотводными ступеньками. Ниобий отличается превосходной свариваемостью в сравнении с вольфрамом и молибденом.

У вас есть вопросы о механической обработке тугоплавких металлов? Мы будем рады помочь вам, используя наш многолетний опыт.

Химические свойства

Ниобий от природы покрыт плотным слоем оксида. Слой оксида защищает материал и обеспечивает высокую коррозионную стойкость. При комнатной температуре ниобий не является устойчивым лишь в нескольких неорганических веществах: это концентрированная серная кислота, фтор, фтороводород, фтористоводородная кислота и щавелевая кислота. Ниобий устойчив в водных растворах аммиака.

Щелочные растворы, жидкий гидроксид натрия и гидроксид калия также оказывают химическое воздействие на ниобий. Элементы, образующие твердые растворы внедрения, в частности водород, также могут сделать ниобий хрупким. Коррозионная стойкость ниобия падает при повышении температуры и при контакте с растворами, состоящими из нескольких химических веществ. При комнатной температуре ниобий полностью устойчив в среде любых неметаллических веществ, за исключением фтора. Однако при температуре выше примерно 150 °C ниобий вступает в реакцию с хлором, бромом, йодом, серой и фосфором.

Коррозионная стойкость в воде, водных растворах и в среде неметаллов
Вода Горячая вода < 150 °C стойкий
Неорганические кислоты Соляная кислота < 30 % до 110 °C
Серная кислота < 98 % до 100 °C
Азотная кислота < 65 % до 190 °C
Фтористо-водородная кислота < 60 %
Фосфорная кислота < 85 % до 90 °C
стойкий
стойкий
стойкий
нестойкий
стойкий
Органические кислоты Уксусная кислота < 100 % до 100 °C
Щавелевая кислота < 10 %
Молочная кислота < 85 % до 150 °C
Винная кислота < 20 % до 150 °C
стойкий
нестойкий
стойкий
стойкий
Щелочные растворы Гидроксид натрия < 5 %
Гидроксид калия < 5 %
Аммиачные растворы < 17 % до 20 °C
Карбонат натрия < 20 % до 20 °C
нестойкий
нестойкий
стойкий
стойкий
Соляные растворы Хлорид аммония < 150 °C
Хлорид кальция < 150 °C
Хлорид железа < 150 °C
Хлорат калия < 150 °C
Биологические жидкости < 150 °C
Сульфат магния < 150 °C
Нитрат натрия < 150 °C
Хлорид олова < 150 °C
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
Неметаллы Фтор Хлор < 100 °C
Бром < 100 °C
Йод < 100 °C
Сера < 100 °C
Фосфор < 100 °C
Бор < 800 °C
не стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий

Ниобий устойчив в некоторых расплавах металлов, таких как Ag, Bi, Cd, Cs, Cu, Ga, Hg, °K, Li, Mg, Na и Pb, при условии что эти расплавы содержат малое количество кислорода. Al, Fe, Be, Ni, Co, а также Zn и Sn все оказывают химическое воздействие на ниобий.

Коррозионная стойкость в расплавах металлов
Алюминий нестойкий Литий стойкий при температуре < 1000 °C
Бериллий нестойкий Магний стойкий при температуре < 950 °C
Свинец стойкий при температуре < 850 °C Натрий стойкий при температуре < 1000 °C
Кадмий стойкий при температуре < 400 °C Никель нестойкий
Цезий стойкий при температуре < 670 °C Ртуть стойкий при температуре < 600°C
Железо нестойкий Серебро стойкий при температуре < 1100 °C
Галлий стойкий при температуре < 400 °C Висмут стойкий при температуре < 550°C
Калий стойкий при температуре < 1000 °C Цинк нестойкий
медь стойкий при температуре < 1200 °C Олово нестойкий
Кобальт нестойкий

Ниобий не вступает в реакцию с инертными газами. По этой причине чистые инертные газы могут использоваться в качестве защитных газов. Однако при повышении температуры ниобий активно вступает в реакцию с содержащимися в воздухе кислородом, азотом и водородом. Кислород и азот можно устранить путем отжига материала в высоком вакууме при температуре выше 1700 °C. Водород устраняется уже при 800 °C. Такой процесс приводит к потере материала из-за образования летучих оксидов и рекристаллизации структуры.

Вы хотите использовать ниобий в своей промышленной печи? Обратите внимание на то, что ниобий может вступать в реакцию с деталями конструкции, изготовленными из тугоплавких оксидов или графита. Даже очень устойчивые оксиды, такие как оксид алюминия, магния или циркония, могут подвергаться восстановлению при высокой температуре, если они вступают в контакт с ниобием. При контакте с графитом могут образовываться карбиды, которые приводят к повышению хрупкости ниобия. Хотя обычно ниобий можно легко комбинировать с молибденом или вольфрамом, он может вступать в реакцию с гексагональным нитридом бора и нитридом кремния. Указанные в таблице предельные температуры действительны для вакуума. При использовании защитного газа эти температуры примерно на 100–200 °C ниже.

Ниобий, ставший хрупким при контакте с водородом, можно регенерировать посредством отжига в высоком вакууме при температуре 800 °C.

Распространенность в природе и подготовка

В 1801 году английский химик Чарльз Хэтчетт исследовал тяжелый черный камень, привезенный из Америки. Он обнаружил, что камень содержит неизвестный на тот момент элемент, который он назвал колумбием по его стране происхождения. Название, под которым он известен сейчас - ниобий, - было дано ему в 1844 году его вторым открывателем Генрихом Розе. Генрих Розе стал первым человеком, которому удалось отделить ниобий от тантала. До этого отличить эти два материала было невозможно. Розе дал металлу название ниобий по имени дочери царя Тантала Ниобии. Тем самым он хотел подчеркнуть тесное родство двух металлов. Металлический ниобий был впервые получен путем восстановления в 1864 году К. В. Бломстрандом. Официальное название ниобий получил только спустя примерно 100 лет после долгих споров. Международное объединение теоретической и прикладной химии признало «ниобий» официальным названием металла.

Ниобий чаще всего встречается в природе в виде колумбита, также известного как ниобит, химическая формула которого (Fe,Mn) [(Nb,Ta)O3]2. Другим важным источником ниобия является пирохлор, ниобат кальция сложной структуры. Месторождения этой руды находятся в Австралии, Бразилии и некоторых африканских странах.

Добываемые руды перерабатываются на нескольких различных стадиях с получением концентратов до 70 % (Ta, Nb)2O5. Затем они растворяются во фтороводородной и серной кислотах. После этого соединения фторида тантала и ниобия разделяют с использованием процесса экстракции. Фторид ниобия окисляется кислородом с образованием пентоксида ниобия, а затем восстанавливается углеродом при 2000 °C с образованием металлического ниобия. После этого получают сверхчистый ниобий, применяя дополнительный процесс электронно-лучевого переплава.

Описание и свойства ниобия

Ниобий – элемент, относящийся к пятой группе периодической , атомный номер – 41. Электронная формула ниобия — Nb 4d45sl. Графическая формула ниобия — Nb — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 4 5s 1. Открыт в 1801 г. – первоначально назван “колумбием”, по названию реки, в которой был обнаружен. В дальнейшем переименован.

Ниобий – металл бело-стального оттенка, имеет пластичность – легко прокатывается в листы. Электронное строение ниобия наделяет его определёнными характеристиками. Отмечается показание большого температурного режима при плавке и точки кипения металла. За счёт этого, как особенность отмечается электронный исход электронов. Сверхпроводимость проявляется только при большой температуре. Для окисления металлу требуется минимальная температура около 300º С и выше. При этом образуется специфичный оксид ниобия Nb2O5.

Ниобий, свойства которого активно взаимодействовать с некоторыми газами. Это водород, кислород и азот, под их воздействием может поменять определённые характеристики. Чем выше температура, тем интенсивнее поглощается водород, делающий ниобий более хрупким, при достижении контрольной отметки 600º С, начинает происходить обратное выделение, и металл восстанавливает утраченные показатели. После этого начинается образование нитрида NbN, для плавления которого требуется 2300º С.

Углерод и содержащие его газы, начинают своё взаимодействие с ниобием при необходимой температуре свыше 1200º С, в результате образуется карбид NbC – t плавления — 3500º С. В результате взаимодействия кремния и бора с металлом ниобием образуется борид NbB2 – t плавления — 2900º С.

Элемент ниобий устойчив почти ко всем известным кислотам, кроме плавиковой кислоты, а особенно её смеси с азотной кислотой. Металл подвержен воздействию щелочей, особенно, горячих. При растворении в них, происходит процесс окисления, и образуется ниобиевая кислота.

Добыча и происхождение ниобия

Содержание металла на тонну заемной породы сравнительно невелико – всего 18 г на тонну. Содержание увеличено в более кислых породах. Наиболее часто в одном залеже встречаются ниобий и тантал , за счёт их близких химических свойств, которые позволяют находится им в одном минерале, и участвовать в общих процессах. Зачастую в некоторых минералах содержащих титан, происходит замещающее явление – «ниобий – титан».

Известно около ста различных минералов содержащих ниобий. Но в промышленности используются единицы. Это пирохлор, лопарит, торолит и т.д. В ультраосновных и щелочных породах ниобий встречается в перовските и эвдиалите.

Месторождения ниобия имеются в Бразилии, Австралии, Канаде, Конго, Нигерии и Руанде.

Производство ниобия довольно сложный процесс, имеющий три основных стадии. Для начала вскрывается концентрат, потом разделяются ниобий и на чистые соединения. Завершающей стадией является восстановительные процессы и рафинирование металла. Из наиболее распространенных способов можно отметить – карботермические, алюмотермические и натриетермические методы.

К примеру, смешивая оксид ниобия и сажу при высоких температурах в водородной среде получают карбид, затем смешав карбид и оксид ниобия при тех же температурах, но уже в полном вакууме получают металл, из которого в дальнейшем выплавляют различные сплавы ниобия . Не исключено получение сплавов ниобия, используя методы порошковой металлургии, с применением вакуумных и электроннолучевых способов дуговой плавки.

Применение ниобия

В связи с уникальными свойствами, ниобий находит применение во многих областях промышленности. Сплавы ниобия обладают тугоплавкостью, жаропрочностью, сверхпроводимостью, геттерными и антикоррозийными свойствами. К тому же он довольно легко обрабатывается и сваривается. Он широко применяется в космических и авиационных технологиях, радио и электротехнике, химической отрасли и атомной энергетике. В генераторных лампах многие нагревательные элементы, выполнены с его применением. Также для этих целей применяются его сплав с танталом.

Электрические выпрямители и электролитические конденсаторы тоже содержат определённое количество этого металла. Его применение в этих устройствах обусловлено характерными ему пропускными и окислительными свойствами. Конденсаторы, включающие в свой состав данный металл, при сравнительно небольших габаритах, обладают большим сопротивлением. Все элементы конденсаторов, выполняются из специальной фольги. Она прессуется из порошка ниобия.

Стойкость к воздействию различных кислот, высокая теплопроводность и податливость структуры, обуславливают его популярность в химии и металлургии, при создании различной аппаратов и конструкций. Сочетание положительных свойств этого важного металла, востребовано даже в атомной энергетике.

За счёт слабого воздействия ниобия с промышленным ураном, при сравнительно невысоких температурах (900º С), металл годен для создания защитного слоя на атомных реакторах. При такой оболочке становиться возможным применение натриевых теплоносителей, с которыми он также почти не взаимодействует. Ниобий значительно продлевает срок службы урановых элементов, создавая на их поверхности защитную окись, от пагубного влияния водяного пара.

Улучшить жаростойкие свойства некоторых , можно посредством легирования с помощью ниобия. Также довольно хорошо себя зарекомендовали сплавы из ниобия. К примеру, это сплав ниобий – цирконий , отличающийся примечательными свойствами. Из подобных сплавов изготовляются различные детали для космических аппаратов и самолётов, а также их обшивки. Рабочая температура такого сплава может доходить до 1200º С.

В состав некоторых сплавов для обработки стали имеется карбид ниобия, усиливающий свойства сплава. Сравнительно небольшая прибавка ниобия, в нержавеющую сталь, усиливает её антикоррозийные свойства и улучшает качество получаемых сварных швов. Многие инструментальные стали также имеют примесь ниобия. Как катализ его различные соединения участвуют в процессах искусственного органического синтеза.

Цена ниобия

Основной формой для продажи на мировом рынке является ниобий в слитках , но вполне возможны и другие формы хранения. В мире всегда имелся спрос на ниобий, цена которого до начала 2000 года держалась на стабильном уровне. Уверенный рост спроса, связанный с развитием экономики многих стран, и увеличением объёма производства в области инновационных технологий, металлургических и химических отраслях, способствовало резкому взлёту цен к 2007 году с 12 $ до 32 $ за килограмм метала.

В последующих годах, в связи с мировым кризисом в экономической отрасли, вплоть до 2012 года, отмечалось их некоторое падение. Темпы товарооборота соответственно снизились. Но уже к 2012 году цены снова поползли вверх, и уже тогда ниобий купить можно было только по 60 $ за килограмм, и рост пока не остановился. Уже давно стоит вопрос о равноценных, но более доступных заменителях. И они имеются, но по свойствам явно уступают ниобию. Поэтому он пока находится в цене.

Ниобий (лат. Niobium), Nb, химический элемент V группы периодической системы Менделеева; атомный номер 41, атомная масса 92,9064; металл серо-стального цвета. Элемент имеет один природный изотоп 93 Nb.

Ниобий открыт в 1801 году английским ученым Ч. Хатчетом (1765-1847) в минерале, найденном в Колумбии, и назван им "колумбием". В 1844 году немецкий химик Г. Роэз (1795-1864) обнаружил "новый" элемент и назвал его "ниобием" в честь дочери Тантала Ниобы, чем подчеркнул сходство между Ниобием и танталом. Позднее было установлено, что Ниобий тот же элемент, что и Колумбий.

Распространение Ниобия в природе. Среднее содержание Ниобий в земной коре (кларк) 2·10 -3 % по массе. Только в щелочных изверженных породах - нифелиновых сиенитах и других, содержание Ниобия повышено до 10 -2 - 10 -1 %. В этих породах и связанных с ними пегматитах, карбонатитах, а также в гранитных пегматитах обнаружено 23 минерала Ниобий и около 130 других минералов, содержащих повышенные количества Ниобия. Это в основном сложные и простые оксиды. В минералах Nb связан с редкоземельными элементами и с Та, Ti, Ca, Na, Th, Fe, Ba (тантало-ниобаты, титанаты и других). Из 6 промышленных минералов наиболее важны пирохлор и колумбит. Промышленные месторождения Ниобия связаны с массивами щелочных пород (например, на Кольском полуострове), их корами выветривания, а также с гранитными пегматитами. Важное значение имеют и россыпи танталониобатов.

В биосфере геохимия Ниобий изучена плохо. Установлено, что в районах щелочных пород, обогащенных Ниобием, он мигрирует в виде соединений с органическими и другими комплексами. Известны минералы Ниобия, образующиеся при выветривании щелочных пород (мурманит, герасимовскит и других). В морской воде лишь около 1·10 -9 % Ниобия по массе.

Физические свойства Ниобия. Кристаллическая решетка Ниобия объемноцентрированная кубическая с параметром а = 3,294Å. Плотность 8,57 г/см 3 (20 °С); t пл 2500 °С; t кип 4927 °С; давление пара (в мм рт. ст.; 1 мм рт. ст.= 133,3 н/м 2) 1·10 -5 (2194 °С), 1·10 -4 (2355 °С), 6·10 -4 (при t пл), 1·10 -3 (2539 °С). Теплопроводность в вт/(м·К) при 0°С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см·сек·°С) 0,125 и 0,156. Удельное объемное электрическое сопротивление при 0°С 15,22·10 -8 ом·м (15,22·10 -6 ом·см). Температура перехода в сверхпроводящее состояние 9,25 К. Ниобий парамагнитен. Работа выхода электронов 4,01 эв.

Чистый Ниобий легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м 2 , то же в кгс/мм 2 34,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7%. Твердость чистого Ниобиы по Бринеллю 450, технического 750-1800 Mн/м 2 . Примеси некоторых элементов, особенно водорода, азота, углерода и кислорода, сильно ухудшают пластичность и повышают твердость Ниобия.

Химические свойства Ниобия. По химические свойствам Ниобий близок к танталу. Оба они чрезвычайно устойчивы (тантал более чем Ниобий) на холоду и при небольшом нагревании к действию многих агрессивных сред. Компактный Ниобий заметно окисляется на воздухе только выше 200 °С. На Ниобий действуют: хлор выше 200 °С, водород при 250 °С (интенсивно при 360 °С), азот при 400 °С. Практически не действуют на Ниобий очищенные от примеси кислорода жидкие Na, К и их сплавы, Li, Bi, Pb, Hg, Sn, применяемые в качестве жидкометаллических теплоносителей в атомных реакторах.

Ниобий устойчив к действию многих кислот и растворов солей. На него не действуют царская водка, соляная и серная кислоты при 20 °С, азотная, фосфорная, хлорная кислоты, водные растворы аммиака. Плавиковая кислота, ее смесь с азотной кислотой и щелочи растворяют Ниобий. В кислых электролитах на Ниобии образуется анодная оксидая пленка с высокими диэлектрическими характеристиками, что позволяет использовать Ниобий и его сплавы с Та взамен дефицитного чистого Та для изготовления миниатюрных электролитических конденсаторов большой емкости с малыми токами утечки.

Конфигурация внешних электронов атома Nb 4d 4 5s l . Наиболее устойчивы соединения пятивалентного Ниобия, но известны и соединения со степенями окисления + 4, +3, +2 и +1, к образованию которых Ниобий склонен более, чем тантал. Например, в системе Ниобий-кислород установлены фазы: оксид Nb 2 O 5 (t пл 1512 °С, цвет белый), нестехеометрические NbO 2,47 и NbO 2,42, оксид NbO 2 (t пл 2080 °С, цвет черный), оксид NbO (t пл 1935 °С, цвет серый) и твердый раствор кислорода в Ниобии. NbO 2 - полупроводник; NbO, сплавленная в слиток, обладает металлическим блеском и электропроводностью металлического типа, заметно испаряется при 1700 °С, интенсивно - при 2300-2350 °С, что используют для вакуумной очистки Ниобия от кислорода; Nb 2 O 5 имеет кислотный характер; ниобиевые кислоты не выделены в виде определенных химические соединений, но известны их соли - ниобаты.

С водородом Nb образует твердый раствор внедрения (до 10 ат.% Н) и гидрид состава от NbH 0,7 до NbH. Растворимость водорода в Nb (в г/см 3) при 20 °С 104, при 500°С 74,4, при 900°С 4,0. Поглощение водорода обратимо: при нагревании, особенно в вакууме, водород выделяется; это используют для очистки Nb от водорода (сообщающего металлу хрупкость) и для гидрирования компактного Nb: хрупкий гидрид измельчают и дегидрируют в вакууме, получая чистый порошок Ниобий для электролитических конденсаторов. Растворимость азота в Ниобии составляет (% по массе) 0,005, 0,04 и 0,07 соответственно при 300, 1000 и 1500 °С. Рафинируют Ниобий от азота нагреванием в глубоком вакууме выше 1900 °С или вакуумной плавкой. Высший нитрид NbN светло-серого цвета с желтоватым оттенком; температура перехода в сверхпроводящее состояние 15,6 К. С углеродом при 1800-2000°С Nb образует 3 фазы: α-фаза - твердый раствор внедрения углерода в Ниобий, содержащий до 2 ат.% С при 2335 °С; β-фаза - Nb 2 C, δ-фаза - NbC. С галогенами Ниобий дает галогениды, оксигалогениды и комплексные соли. Из них наиболее важны пентафторид NbF 5 , пентахлорид NbCl 5 , окситрихлорид NbOCl 3 , фторониобат калия K 2 NbF 7 и оксифторониобат калия K 2 NbOF 7 ·Н 2 О. Небольшое различие в давлении паров NbCl 5 и ТаСl 5 используют для их весьма полного разделения и очистки методом ректификации.

Получение Ниобия. Руды Nb - обычно комплексные и бедны Nb, хотя их запасы намного превосходят запасы руд Та. Рудные концентраты содержат Nb 2 O 5: пирохлоровые - не менее 37%, лопаритовые - 8%, колумбитовые - 30-60%. Большую их часть перерабатывают алюмино- или силикотермическим восстановлением на феррониобий (40-60% Nb) и ферротанталониобий. Металлич. Nb получают из рудных концентратов по сложной технологии в три стадии: 1) вскрытие концентрата, 2) разделение Nb и Та и получение их чистых химические соединений, 3) восстановление и рафинирование металлического Ниобия и его сплавов. Основные промышленные методы производства Nb и сплавов - алюминотермический, натриетермический, карботермический: из смеси Nb 2 O 5 и сажи вначале получают при 1800 °С в атмосфере водорода карбид, затем из смеси карбида и оксид (V) при 1800-1900 °С в вакууме - металл; для получения сплавов Ниобия в эту смесь добавляют оксиды легирующих металлов; по другому варианту Ниобий восстанавливают при высокой температуре в вакууме непосредственно из Nb 2 O 5 сажей. Натриетермическим способом Ниобий восстанавливают натрием из K 2 NbF 7 , алюминотермическим - алюминием из Nb 2 O 5 . Компактный металл (сплав) производят методами порошковой металлургии, спекая спрессованные из порошков штабики в вакууме при 2300 °С, либо электроннолучевой и вакуумной дуговой плавкой; монокристаллы Nb высокой чистоты - бестигельной электроннолучевой зонной плавкой.

Применение Ниобия. Применение и производство Ниобия быстро возрастают, что обусловлено сочетанием таких его свойств, как тугоплавкость, малое сечение захвата тепловых нейтронов (1,15 б), способность образовывать жаропрочные, сверхпроводящие и других сплавы, коррозионная стойкость, геттерные свойства, низкая работа выхода электронов, хорошие обрабатываемость давлением на холоду и свариваемость. Основные области применения Ниобия: ракетостроение, авиационная и космическая техника, радиотехника, электроника, химическое аппаратостроение, атомная энергетика. Из чистого Ниобия или его сплавов изготовляют детали летательных аппаратов; оболочки для урановых и плутониевых тепловыделяющих элементов; контейнеры и трубы для жидких металлов; детали электрических конденсаторов; "горячую" арматуру электронных (для радарных установок) и мощных генераторных ламп (аноды, катоды, сетки и другие); коррозионноустойчивую аппаратуру в химической промышленности. Ниобием легируют другие цветные металлы, в т. ч. уран. Ниобий применяют в криотронах - сверхпроводящих элементах вычислительных машин, а станнид Nb 3 Sn и сплавы Nb с Ti и Zr - для изготовления сверхпроводящих соленоидов. Nb и сплавы с Та во многих случаях заменяют Та, что дает большой экономический эффект (Nb дешевле и почти вдвое легче, чем Та). Феррониобий вводят в нержавеющие хромоникелевые стали для предотвращения их межкристаллитной коррозии и разрушения и в стали других типов для улучшения их свойств. Применяют и соединения Ниобия: Nb 2 O 5 (катализатор в химической промышленности; в производстве огнеупоров, керметов, специальных стекол), нитрид, карбид, ниобаты.