Государственный комитет российской федерации по высшему образованию. Приборы для передачи направления целей и сигналов

В руках передового наблюдателя итальянской армии прибор разведки и целеуказания Elbit PLDRII, состоящий на вооружении многих заказчиков, включая корпус морской пехоты, где он имеет обозначение AN/PEQ-17

В поисках цели

Для того чтобы выработать координаты цели, система сбора данных должна в первую очередь знать свою собственную позицию. От нее она может определить дальность до цели и угол последней относительно истинного полюса. Система наблюдения (предпочтительно дневная и ночная), система точного определения местоположения, лазерный дальномер, цифровой магнитный компас являются типичными компонентами подобного устройства. Также неплохо в подобной системе иметь следящее устройство, способное идентифицировать кодированный лазерный луч для подтверждения цели пилоту, что, как следствие, повышает безопасность и уменьшает коммуникационный обмен. Указчики с другой стороны не достаточно мощны для наведения вооружения, но позволяют отметить цель для наземных или авиационных (бортовых) целеуказателей, которые, в конечном счете, наводят полуактивную лазерную головку самонаведения боеприпаса на цель. Наконец, радары обнаружения артиллерийских позиций позволяют точно определить позиции вражеской артиллерии, даже если (а так чаще всего и бывает) они находятся не в прямой видимости. Как было сказано , в этом обзоре будут рассмотрены только ручные системы.

Для того чтобы понять, что военные хотят иметь в своих руках, давайте рассмотрим требования, опубликованные американской армией в 2014 году, к своему лазерному прибору разведки и целеуказания LTLM (Laser Target Location Module) II, который должен через какое-то время заменить состоящий на вооружении предыдущий вариант LTLM. Армия ожидает прибор массой 1,8 кг (в конечном счете 1,6 кг), хотя вся система, включая сам прибор, кабели, треногу и комплект для чистки объективов, может поднять планку до 4,8 кг в лучшем случае до 3,85 кг. Если сравнивать, то нынешний модуль LTLM имеет базовую массу 2,5 кг и общую массу 5,4 кг. Пороговое значение ошибки местоположения цели определено в 45 метров на 5 километрах (также как у LTLM), практическое круговое вероятное отклонение (КВО) 10 метров на 10 км. Для дневных операций LTLM II будет иметь оптику с минимальным увеличением x7, минимальным полем зрения 6°x3.5°, окулярную шкалу с приращением 10 мил, а также дневную цветную телекамеру. Она обеспечит потоковое видео и широкое поле зрения 6°x4.5°, гарантируя вероятность распознавания 70% на 3,1 км и идентификацию на 1,9 км в ясную погоду. Узкое поле зрения должно быть не более 3°x2.25°, а лучше 2.5°x1.87°, с соответствующими дальностями распознавания 4,2 или 5 км и дальностями идентификации 2,6 или 3,2 км. Тепловизионный канал будет иметь такие же целевые поля зрения с вероятностью 70%-распознавания на 0,9 и 2 км и идентификации на 0,45 и 1 км. Данные о цели будут сохраняться в координатном блоке UTM/UPS, а данные и изображения передаваться через разъемы RS-232 или USB 2.0. Питание будет осуществляться от литиевых аккумуляторов L91 AA. Минимальная возможность установления связи должна обеспечиваться лёгким высокоточным GPS-приемником PLGR (Precision Lightweight GPS Receiver) и продвинутым военным GPS-приемником DAGR (Defense Advanced GPS Receiver), а также разрабатываемыми системами GPS. Впрочем, армия предпочла бы систему, которая также могла бы взаимодействовать с карманным устройством ввода информации Pocket Sized Forward Entry Device, программным обеспечением передового наблюдателя Forward Observer Software/System, системой управления боем Force XXI Battle Command, Brigade-and-Below и системой сетевого солдата Net Warrior.

Компания BAE Systems предлагает два прибора разведки и целеуказания. UTB X-LRF представляет собой развитие устройства UTB X, к которому был добавлен лазерный дальномер Class 1 с дальностью действия 5,2 км. Прибор базируется на неохлаждаемой тепловизионной матрице размером 640x480 пикселей с шагом 17 микрон, он может иметь оптику с фокусным расстоянием 40, 75 и 120 мм с соответствующей кратностью увеличения x2.1, x3.7 и x6.6, диагональными полями зрения 19°, 10.5° и 6.5° и электронным увеличением x2. По данным компании BAE Systems дальности положительного (вероятность 80%) обнаружения цели стандарта НАТО площадью 0,75 м2 составляют соответственно 1010, 2220 и 2660 метров. Прибор UTB X-LRF оснащен системой GPS точностью 2,5 метра и цифровым магнитным компасом. В него входят также лазерный указатель Class 3B в видимом и инфракрасном спектрах. В приборе может храниться до ста изображений в несжатом формате BMP. Питание осуществляется от четырех литиевых аккумуляторов L91, обеспечивающих пять часов работы, хотя прибор можно подключить к внешнему источнику питания через порт USB. UTB X-LRF имеет длину 206 мм, ширину 140 мм и высоту 74 мм, весит 1,38 кг без аккумуляторов.


В американской армии прибор Trigr от компании BAE Systems известен как Laser Target Locator Module, он включает неохлаждаемую тепловизионную матрицу и весит менее 2,5 кг


Прибор UTB X-LRF представляет собой дальнейшее развитие UTB X, в него добавлен лазерный дальномер, позволивший превратить устройство в полноценную систему разведки, наблюдения и целеуказания

Еще одно изделие компании BAE Systems – это лазерный прибор разведки и целеуказания Trigr (Target Reconnaissance Infrared GeoLocating Rangefinder – разведка цели инфракрасный геолокация дальномер), разработанный в сотрудничестве с Vectronix. Компания BAE Systems предоставляет для прибора неохлаждаемый тепловизор и помехозащищённый приемник GPS государственного стандарта с избирательной доступностью, тогда как Vectronix обеспечивает оптику с увеличением x7, оптоволоконный лазерный дальномер с дальностью 5 км и цифровой магнитный компас. По данным компании, прибор Trigr гарантирует КВО 45 метров на дистанции 5 км. Дальность распознавания днем составляет 4,2 км или более 900 метров ночью. Весит прибор менее 2,5 кг, два комплекта гарантируют круглосуточную работу. Вся система с треногой, аккумуляторами и кабелями весит 5,5 кг. В американской армии прибор получил обозначение Laser Target Locator Module; в 2009 году с ней был подписан пятилетний контракт на неопределенное количество, плюс еще два в августе 2012 года и январе 2013 года стоимостью 23,5 и 7 миллиона долларов соответственно.

Ручной лазерный прибор разведки, наблюдения и целеуказания Mark VII компании Northrop Grumman был заменен усовершенствованным прибором Mark VIIE. Эта модель получила тепловизионный канал вместо канала усиления яркости изображения предыдущей модели. Неохлаждаемый сенсор значительно улучшает обзорность в ночных условиях и в сложных условиях; он отличается полем зрения 11.1°x8.3°. Дневной же канал базируется на оптике переднего обзора с увеличением x8.2 и полем зрения 7°x5°. Цифровой магнитный компас обеспечивает точность ±8 мил, электронный клинометр имеет точность ±4 мил, местоположение обеспечивается встроенным помехозащищённым модулем с избирательной доступностью GPS/SAASM. Лазерный дальномер Nd-Yag (лазер на иттрий-алюминиевом гранате с неодимом) с оптической параметрической генерацией обеспечивает максимальную дальность 20 км с точностью ±3 метра. Прибор Mark VIIE весит 2,5 кг с девятью коммерческими элементами CR123, также он оснащен интерфейсом передачи данных RS-232/422.

Новейшим продуктом в портфолио компании Northrop Grumman является устройство HHPTD (Hand Held Precision Targeting Device – ручное высокоточное устройство целеуказания), которое весит менее 2,26 кг. По сравнению со своими предшественниками оно имеет дневной цветной канал, а также немагнитный астронавигационный модуль, который значительно повышает точность до уровня, необходимого современным управляемым по сигналам GPS боеприпасам. Контракт на разработку устройства стоимостью 9,2 миллиона долларов был выдан в январе 2013 года, работы велись в сотрудничестве с компаниями Flir, General Dynamics и Wilcox. В октябре 2014 года были проведены испытания устройства на ракетном полигоне Уайт-Сэндс.


Ручное высокоточное устройство Hand Held Precision Targeting Device представляет собой одну из новейших разработок компании Northrop Grumman; его комплексные испытания были проведены в конце 2014 года


У приборов семейства Flir Recon B2 основной канал – охлаждаемый тепловизионный. Прибор B2-FO с дополнительным дневным каналом в руках итальянского спецназовца (на фото)

Компания Flir имеет в своем портфолио несколько ручных приборов целеуказания и сотрудничает с другими компаниями, предоставляя устройства ночного видения для подобных систем. Прибор Recon B2 отличается основным тепловизионным каналом, работающим в средневолновом ИК-диапазоне. Устройство с охлаждаемой матрицей 640x480 на антимониде индия обеспечивает широкое поле зрения 10°x8°, узкое поле зрения 2.5°x1.8° и непрерывное электронное увеличение x4. Тепловизионный канал оборудован автофокусом, автоматической регулировкой усиления яркости и цифровым улучшением качества данных. Вспомогательный канал может быть оснащен либо дневным сенсором (модель B2-FO), либо длинноволновым инфракрасным каналом (модель B2-DC). Первый базируется на цветной 1/4" цветной ПЗС-камере с матрицей 794x494 с непрерывным цифровым увеличением x4 и двумя такими же полями зрения как у предыдущей модели. Вспомогательный тепловизионный канал базируется на микроболометре 640x480 на оксиде ванадия и обеспечивает одно поле зрения 18° с цифровым увеличением x4. В приборе B2 имеется модуль GPS C/A code (Coarse Acquisition code - код грубого определения местоположения объектов) (впрочем, с целью повышения точности может быть встроен модуль GPS военного стандарта), цифровой магнитный компас и лазерный дальномер с дальностью 20 км, а также лазерный указатель Class 3B с длиной волны 852 нанометра. Прибор B2 может сохранить до 1000 изображений в формате jpeg, которые могут быть выгружены через разъемы USB или RS-232/422, также имеются разъемы NTSC/PAL и HDMI для записи видеосигнала. Масса прибора менее 4 кг, включая шесть литиевых аккумуляторов D, обеспечивающих четыре часа непрерывной работы или более пяти часов в энергосберегающем режиме. Recon B2 может оборудоваться комплектом дистанционного управления, в состав которого входят тренога, панорамное поворотное устройство, блок энергоснабжения и связи и блок управления.


Компания Flir предлагает более легкий вариант прибора наблюдения и целеуказания Recon V, в состав которого входят тепловой сенсор, дальномер и другие типовые сенсоры, упакованные в корпус массой 1,8 кг

Более легкая модель Recon B9-FO отличается неохлаждаемым тепловизионным каналом с полем зрения 9.3°x7° и цифровым увеличением x4. Цветная камера имеет непрерывное увеличение x10 и цифровое x4, тогда как характеристики приемника GPS, цифрового компаса и лазерного указателя такие же как у модели B2. Основное отличие заключается в дальномере, имеющем максимальную дальность действия 3 км. Прибор B9-FO предназначен для работы на меньшей дальности; также он весит существенно меньше модели B2, менее 2,5 кг с двумя аккумуляторами D, которые обеспечивают пять часов непрерывной работы.

Благодаря отсутствию дневного канала еще меньше весит прибор Recon V, всего 1,8 кг с аккумуляторами, которые обеспечивают шесть часов работы при возможности «горячей» замены. Его охлаждаемая матрица на антимониде индия размером 640x480 пикселей работает в средневолновой ИК-области спектра, она имеет оптику с увеличением x10 (широкое поле зрения 20°x15°). Дальномер прибор рассчитан на дальность 10 км, тогда как гироскоп на базе микроэлектромеханических систем обеспечивает стабилизацию изображения.

Французская компания Sagem предлагает три бинокулярных решения для дневной/ночной засечки целей. Все они имеют в своем составе одинаковый цветной дневной канал с полем зрения 3°x2.25°, безопасный для глаз лазерный дальномер на 10 км, цифровой магнитный компас с азимутом 360° и углами места ±40° и модуль GPS C/S с точностью до трех метров (прибор может подключаться к внешнему модулю GPS). Основное отличие приборов заключается в тепловизионном канале.

Первым в списке стоит многофункциональный бинокль Jim UC, который имеет неохлаждаемую матрицу 640x480 с идентичными ночными и дневными полями зрения, тогда как широкое поле зрения составляет 8.6°x6.45°. Jim UC оснащен цифровым увеличением, стабилизацией изображения, встроенной функцией записи фото и видео; опциональной функцией слияния изображений между дневным и тепловизионным каналами. В его состав также входит безопасный для глаз лазерный указатель с длиной волны 0,8 мкм плюс аналоговые и цифровые порты. Без батарей бинокль весит 2,3 кг. Перезаряжаемая батарея обеспечивает более пяти часов непрерывной работы.


Многофункциональный бинокль Jim Long Range французской компании Sagem был поставлен французской пехоте как часть боевой экипировки Felin; на фото бинокль установлен на устройство целеуказания Sterna от Vectronix

Далее идет более продвинутый многофункциональный бинокль Jim LR, от которого, кстати, «отпочковался» прибор UC. Он состоит на вооружении французской армии, являясь частью боевой экипировки французского солдата Felin. Jim LR отличается тепловизионным каналом с сенсором 320x240 пикселей, работающим в диапазоне 3-5 мкм; узкое поле зрения такое же, как у модели UC, а широкое поле зрения составляет 9°x6.75°. Более мощный лазерный указатель, увеличивающий дальность действия с 300 до 2500 метров, предлагается опционально. Система охлаждения естественно увеличивает массу устройств Jim LR до 2,8 кг без аккумуляторов. Однако, охлаждаемый тепловизионный модуль значительно повышает характеристики, дальности обнаружения, распознавания и идентификации человека составляют соответственно 3/1/0,5 км для модели UC и 7/2,5/1,2 км для модели LR.

Замыкает модельный ряд многофункциональный бинокль Jim HR с еще более высокими характеристиками, которые обеспечивает матрица VGA 640x480 высокого разрешения.

Подразделение компании Sagem фирма Vectronix предлагает две платформы наблюдения, которые при подсоединении к системам от Vectronix и/или Sagem образуют чрезвычайно точные модульные инструменты для целеуказания.

Цифровой магнитный компас, входящий в состав цифровой станции наблюдения GonioLight, обеспечивает точность 5 мил (0,28°). При подсоединении гироскопа с ориентацией на истинный (географический) полюс точность повышается до 1 мила (0,06°). Гироскоп массой 4,4 кг устанавливается между самой станцией и треногой, в итоге общий вес GonioLight, гироскопа и треноги стремится к 7 кг. Без гироскопа подобная точность может быть достигнута за счет с применения встроенных процедур топографической привязки по известным наземным ориентирам или небесным телам. В систему встроены модуль GPS и канал доступа к внешнему модулю GPS. Станция GonioLight оборудована подсвечиваемым экраном и имеет интерфейсы для компьютеров, средств связи и других внешних устройств. На случай неисправности в системе имеются вспомогательные шкалы для определения направления и вертикального угла. Система позволяет принять различные дневные или ночные устройства наблюдения и дальномеры, например семейства дальномеров Vector или биноклей Sagem Jim, описанные выше. Специальные крепления в верхней части станции GonioLight позволяют также устанавливать две оптико-электронных подсистемы. Общая масса варьируется от 9,8 кг в конфигурации GLV, включающей GonioLight плюс дальномер Vector, до 18,1 кг в конфигурации GL G-TI, куда входят GonioLight, Vector, Jim-LR и гироскоп. Станция наблюдения GonioLight была разработана в начале 2000-х годов и с тех пор во многие страны было поставлено более 2000 этих систем. Эта станция также применялась в боевых действиях в Ираке и Афганистане.

Опыт компании Vectronix помог ей разработать сверхлегкую немагнитную систему целеуказания Sterna. Если GonioLite предназначена для дальностей свыше 10 км, то Sterna для дальностей 4-6 км. Вместе с треногой система весит около 2,5 кг, точность составляет менее 1 мила (0,06°) на любой широте при использовании известных ориентиров. Это позволяет получить ошибку местоположения цели менее четырех метров на дальности 1,5 км. На случай недоступности ориентиров система Sterna оборудуется полусферическим резонансным гироскопом совместной разработки Sagem и Vectronix, который обеспечивает точность 2 мила (0,11°) при определении истинного севера до широты 60°. Время установки и ориентирования составляет менее 150 секунд, при этом необходимо грубое выравнивание ±5°. Устройство Sterna питается от четырех элементов CR123A, обеспечивающих 50 операций ориентирования и 500 измерений. Как и GonlioLight, система Sterna может принять различные типы оптико-электронных систем. Например, в портфолио компании Vectronix имеется самый легкий прибор массой менее 3 кг PLRF25C и чуть более тяжелый (менее 4 кг) Moskito. Для выполнения более сложных задач могут быть добавлены устройства Vector или Jim, но масса при этом увеличивается до 6 кг. Система Sterna имеет специальное место крепления для установки на цапфу транспортного средства, с которой она может быть быстро снята для проведения спешенных операций. Для оценки эти системы в большом количестве были поставлены в войска. Американская армия заказала ручные системы Vectronix и системы Sterna в рамках Требования по ручным высокоточным устройствам целеуказания, выпущенного в июле 2012 года. В компании Vectronix с уверенностью говорят о постоянном росте продаж системы Sterna в 2015 году.

В июне 2014 года компания Vectronix показала прибор наблюдения и целеуказания Moskito TI с тремя каналами: дневным оптическим с увеличением x6, оптическим (технология КМОП) с усилением яркости (оба с полем зрения 6.25°) и неохлаждаемым тепловизионным с полем зрения 12°. В состав устройства входят также дальномер на 10 км с точностью ±2 метра и цифровой компас с точностью по азимуту ±10 мил (±0,6°) и по углу места ±3 мил (±0,2°). Модуль GPS идет опционально, хотя имеется разъем для внешних гражданских и военных приемников GPS, а также модулей Galileo или ГЛОНАСС. Имеется возможность подключения лазерного указателя. Устройство Moskito TI имеет интерфейсы RS-232, USB 2.0 и Ethernet, беспроводная связь Bluetooth идет опционально. Он питается от трех батареек или аккумуляторов CR123A, обеспечивающих свыше шести часов бесперебойной работы. И, наконец, все вышеупомянутые системы упакованы в устройство размерами 130x170x80 мм массой менее 1,3 кг. Это новое изделие является дальнейшим развитием модели Moskito, которая при массе 1,2 кг имеет дневной канал и канал с усилением яркости, лазерный дальномер дальностью 10 км, цифровой компас; опционально возможна интеграция GPS гражданского стандарта или подсоединение к внешнему приемнику GPS.

Компания Thales предлагает полный набор систем разведки, наблюдения и целеуказания. Система Sophie UF массой 3,4 кг имеет оптический дневной канал с увеличением x6 и полем зрения 7°. Дальность действия лазерного дальномера достигает 20 км, в Sophie UF может устанавливаться приемник GPS P(Y) code (шифрованный код точного местоположения объекта) или C/A code (код грубого определения местоположения объектов), который может подсоединяться к внешней приемнику DAGR/PLGR. Магниторезистивный цифровой компас с точностью 0,5° по азимуту и инклинометр с гравитационным датчиком с точностью 0,1° завершают сенсорный комплект. Устройство питается от элементов AA, обеспечивающих 8 часов работы. Система может работать в режимах коррекции падения снарядов и сообщения данных о цели; для экспорта данных и изображений она оснащена разъемами RS232/422. Система Sophie UF состоит также на вооружении британской армии под обозначением SSARF (Surveillance System and Range Finder – система обзора и дальномер).

Двигаясь от простого к сложному, остановимся на приборе Sophie MF. В его состав входят охлаждаемый тепловизор 8-12 мкм с широким 8°x6° и узким 3.2°x2.4° полями зрения и цифровым увеличением x2. Как опция идет цветной дневной канал с полем зрения 3.7°x2.8° наряду с лазерным указателем с длиной волны 839 нм. Также в систему Sophie MF входят лазерный дальномер на 10 км, встроенный приемник GPS, разъем для подсоединения к внешнему приемнику GPS и магнитный компас с точностью по азимуту 0,5° и углу места 0,2°. Sophie MF весит 3,5 кг и работает от комплекта аккумуляторов более четырех часов.

Прибор Sophie XF почти идентичен модели MF, основное отличие заключается в тепловизионном сенсоре, который работает в средневолновой (3-5 мкм) ИК-области спектра и имеет широкое 15°x11.2° и узкое 2.5°x1.9° поля зрения, оптическое увеличение x6 и электронное увеличение x2. Для вывода видеоданных доступны аналоговые и HDMI выходы, ведь Sophie XF способен хранить до 1000 фотографий или до 2 Гб видео. Также имеются порты RS 422 и USB. Модель XF имеет такие же размеры и вес, как и модель MF, хотя время работы от комплекта аккумуляторов составляет чуть больше шести или семи часов.

Британская компания Instro Precision, специализирующаяся на гониометрах и панорамных головках, разработала модульную систему разведки и целеуказания MG-TAS (Modular Gyro Target Acquisition System), базирующуюся на гироскопе, который позволяет выполнять высокоточное определение истинного полюса. Точность составляет менее 1 мил (не зависит от магнитных помех), а цифровой гониометр предлагает точность 9 мил в зависимости от магнитного поля. Система также включает легкую треногу и упрочненный карманный компьютер с полным набором инструментов целеуказания для обсчета данных цели. Интерфейс позволяет устанавливать один или два сенсора целеуказания.


Компания Vectronix разработала легкую немагнитную систему разведки и целеуказания Sterna, имеющую дальности действия от 4 до 6 километров (на фото установлена на Sagem Jim-LR)


Последним добавлением к семейству устройств целеуказания является модель Vectronix Moskito 77, которая имеет два дневных и один тепловизионный канал


Прибор Sophie XF компании Thales позволяет определять координаты цели, а для ночного обзора имеется сенсор, работающий в средневолновой ИК-области спектра


Система Nestor компании Airbus DS с охлаждаемой тепловизионной матрицей и массой 4,5 кг разработана для немецких горнострелковых войск. Она состоит на вооружении нескольких армий

Компания Airbus DS Optronics предлагает два прибора разведки, наблюдения и целеуказания Nestor и TLS-40, оба производятся в Южной Африке. Прибор Nestor, производство которого начато в 2004-2005 годы, изначально был разработан для немецких горнострелковых подразделений. Биокулярная система массой 4,5 кг включает дневной канал с увеличением x7 и полем зрения 6.5° с приращением визирных нитей 5 мил, а также тепловизионный канал на базе охлаждаемой матрицы размером 640x512 пикселей с двумя полями зрения, узким 2.8°x2.3° и широким (11.4°x9.1°). Расстояние до цели измеряет лазерный дальномер Class 1M с дальностью 20 км и точностью ±5 метров и регулировкой стробирования (частоты повторения импульса) по дальности. Направление и угол возвышения цели обеспечивает цифровой магнитный компас с точностью по азимуту ±1° и по углу места ±0.5°, при этом измеримый угол места составляет +45°. В прибор Nestor встроен 12-канальный приемник GPS L1 C/A(грубое определение), также можно подключать внешние модули GPS. Имеется видеовыход CCIR-PAL. Питается прибор от литий-ионных аккумуляторов, но имеется возможность подключения к внешнему источнику питания постоянного тока на 10-32 Вольта. Охлаждаемый тепловизор увеличивает массу системы, но при этом повышаются возможности ночного видения. Система состоит на вооружении нескольких европейских армий, включая Бундесвер, нескольких европейских пограничных сил и неназываемых покупателей с Ближнего и Дальнего Востока. Компания ожидает несколько крупных контрактов на сотни систем в 2015 году, однако новых заказчиков там не называют.

Используя опыт, полученный при создании системы Nestor, компания Airbus DS Optronics разработала более легкую систему Opus-H с неохлаждаемым тепловизионным каналом. Поставки ее начались в 2007 году. Она имеет такой же дневной канал, в то время как микроболметрическая матрица размером 640x480 обеспечивает поле зрения 8.1°x6.1° и возможность сохранения изображений в формате jpg. Другие компоненты были оставлены без изменений, включая моноимпульсный лазерный дальномер, который не только увеличивает дальность измерений без необходимости стабилизации на треноге, но также определяет и показывает до трех целей на любой дальности. Также от предыдущей модели оставлены последовательные разъемы USB 2.0, RS232 и RS422. Восемь элементов AA обеспечивают энергоснабжение. Прибор Opus-H весит примерно на один кг меньше прибора Nestor, по размерам он также меньше, 300x215x110 мм по сравнению с 360x250x155 мм. Покупатели системы Opus-H из военных и военизированных структур не разглашаются.




Система Opus-H компании Airbus DS Optronics

В связи с растущей потребностью в легких и дешевых системах целеуказания компания Airbus DS Optronics (Pty) разработала серию приборов TLS 40, которые весят менее 2 кг с аккумуляторами. Доступны три модели: TLS 40 только с дневным каналом, TLS 40i с усилением яркости изображения и TLS 40IR с неохлаждаемой тепловизионной матрицей. Их лазерный дальномер и GPS такие же как у прибора Nestor. Цифровой магнитный компас работает в диапазоне вертикальных углов ±45°, углов поперечного уклона ±30° и обеспечивает точность по азимуту ±10 мил и по углу места ±4 мил. Общий с предыдущими двумя моделями биокулярный дневной оптический канал с такими же визирными нитями как у прибора Nestor имеет увеличение x7 и поле зрения 7°. Вариант с увеличением яркости изображения TLS 40i имеет монокулярный канал на базе трубки Photonis XR5 с увеличением х7 и полем зрения 6°. Модели TLS 40 и TLS 40i имеют одинаковые физические характеристики, их размеры 187x173x91 мм. При одинаковой с двумя другими моделями массе прибор TLS 40IR больше по размерам, 215x173x91 мм. Она имеет монокулярный дневной канал с таким же увеличением и чуть боле узкое поле зрения 6°. Микроболометрическая матрица 640x312 обеспечивает поле зрения 10.4°x8.3° с цифровым увеличением x2. Изображение выводится на черно-белый oled-дисплей. Все модели TLS 40 могут опционально оснащаться дневной камерой с полем зрения 0.89°x0.75° для захвата изображений в формате jpg и диктофоном для записи речевых комментраиев в формате WAV по 10 секунд на изображение. Все три модели питаются от трех батареек CR123 или от внешнего источника питания на 6-15 Вольт, имеют последовательные разъемы USB 1.0, RS232, RS422 и RS485, видеовыходы PAL и NTSC, а также могут оснащаться внешним приемником GPS. Серия TLS 40 уже поступила на вооружение неназываемых заказчиков, включая африканских.


Nyxus Bird Gyro отличается от предыдущей модели Nyxus Bird гироскопом для ориентирования на истинный полюс, что значительно повышает точность определения координат цели на больших дистанциях

Немецкая компания Jenoptik разработала дневную-ночную систему разведки, наблюдения и целеуказания Nyxus Bird, которая выпускается в вариантах среднего и дальнего действия. Отличие состоит в тепловизионном канале, который у варианта средней дальности оснащен объективом с полем зрения 11°x8°. Дальности обнаружения, распознавания и идентификации стандартной цели НАТО составляют соответственно 5, 2 и 1 км. Вариант дальнего действия с оптикой с полем зрения 7°x5° обеспечивает большие дальности, соответственно 7, 2,8 и 1,4 км. Размер матрицы у обоих вариантов составляет 640x480 пикселей. Дневной канал у двух вариантов имеет поле зрения 6,75° и увеличение x7. Лазерный дальномер Class 1 имеет типичную дальность 3,5 км, цифровой магнитный компас обеспечивает точность по азимуту 0,5° в секторе 360° и по углу места 0,2° в секторе 65°. Nyxus Bird отличается несколькими режимами измерения и может хранить до 2000 инфракрасных изображений. Имея встроенный модуль GPS, тем не менее, он может подсоединяться к системе PLGR/DAGR для дополнительного повышения точности. Для передачи фото и видео имеется разъем USB 2.0, беспроводная связь Bluetooth идет опционально. С литиевым аккумулятором на 3 Вольта устройство весит 1,6 кг, без наглазника длина составляет 180 мм, ширина 150 мм и высота 70 мм. Nyxus Bird входит в состав программы модернизации немецкой армии IdZ-ES. Добавление тактического компьютера Micro Pointer с комплексной геоинформационной системой значительно повышает возможности локализации целей. Micro Pointer работает от встроенного и внешнего источников питания, имеет разъемы RS232, RS422, RS485 и USB и опциональный разъем Ethernet. Этот небольшой компьютер (191x85x81 мм) весит всего 0,8 кг. Еще одна дополнительная система – это гироскоп для немагнитной ориентации на истинный полюс, который обеспечивает очень точное направление и точные координаты цели на всех сверхдальних дистанциях. Гироскопическая головка с такими же разъемами как у Micro Pointer может подсоединяться к внешней системе GPS PLGR/DAGR. Четыре элемента CR123A обеспечивают 50 операций ориентирования и 500 измерений. Головка весит 2,9 кг, а вся система целиком с треногой 4,5 кг.

Финская компания Millog разработала ручную систему целеуказания Lisa, в состав которой входит неохлаждаемый тепловизор и оптический канал с дальностями обнаружения, распознавания и идентификации транспортного средства 4,8 км, 1,35 км и 1 км соответственно. Система весит 2,4 кг с аккумуляторами, которые обеспечивают время работы 10 часов. После получения контракта в мае 2014 год система начала поступать на вооружение финской армии.

Разработанный несколько лет назад для программы модернизации солдата итальянской армии Soldato Futuro Italian Army компанией Selex-ES, многофункциональный ручной дневной/ночной прибор разведки и целеуказания Linx был усовершенствован и в настоящее время имеет неохлаждаемую матрицу 640x480. Тепловизионный канал имеет поле зрения 10°x7.5° с оптическим увеличением x2.8 и электронным увеличением x2 и x4. Дневной канал – это цветная телекамера с двумя увеличениями (x3.65 и x11.75 с соответствующими полями зрения 8.6°x6.5° и 2.7°x2.2°). В цветной VGA дисплей встроено программируемое электронное визирное перекрестье. Измерение дальности возможно до 3 км, местоположение определяется с помощью встроенного приемника GPS, тогда как цифровой магнитный компас обеспечивает информацию по азимуту. Экспорт изображений осуществляется через разъем USB. Дальнейшая доработка прибора Linx ожидается в течение 2015 года, когда в него будут встроены миниатюрные охлаждаемые сенсоры и новые функции.

В Израиле военные стремятся повысить свои возможности огневого взаимодействия. С этой целью каждому батальону будет придана группа координации воздушных ударов и наземной огневой поддержки. В настоящее время батальону придается один офицер связи артиллерии. Национальная промышленность уже работает над обеспечением инструментальных средств для решения этой задачи.


Прибор Lisa финской компании Millog оснащен неохлаждаемым тепловизионным и дневным каналами; при массе всего 2,4 кг он имеет дальности обнаружения чуть менее 5 км


Прибор Coral-CR с охлаждаемым тепловизионным каналом входит в линейку систем целеуказания израильской компании Elbit

Компания Elbit Systems очень активно работает как в Израиле, так и в Соединенных Штатах. Ее прибор наблюдения и разведки Coral-CR имеет охлаждаемый средневолновой детектор 640x512 на антимониде индия, имеющий оптические поля зрения от 2.5°x2.0° до 12.5°x10° и цифровое увеличение x4. Черно-белая ПЗС-камера с полями зрения от 2.5°x1.9° до 10°x7.5° работает в видимой и ближней ИК-области спектра. Изображения выводятся на цветной oled-дисплей высокого разрешения через настраиваемую бинокулярную оптику. Безопасный для глаз лазерный дальномер Class 1, встроенный GPS и цифровой магнитный компас с точностью 0.7° по азимуту и углу места довершают сенсорный комплект. Координаты цели вычисляются в реальном времени и могут предаваться на внешние устройства, прибор может сохранять до 40 изображений. Имеются видеовыходы CCIR или RS170. Прибор Coral-CR имеет длину 281 мм, ширину 248 мм, высоту 95 мм и массу 3,4 кг, включая перезаряжаемый аккумулятор ELI-2800E. Прибор состоит на вооружении многих стран НАТО (в Америке под обозначением Emerald-Nav).

Неохлаждаемый тепловизор Mars легче и дешевле, он базируется на 384x288 детекторе на оксиде ванадия. Кроме тепловизионного канала с двумя полями зрения 6°x4.5° и 18°x13.5° в него встроена цветная дневная камера с полями зрения 3°x2.5° и 12°x10°, лазерный дальномер, приемник GPS и магнитный компас. Прибор Mars имеет длину 200 мм, ширину 180 мм и высоту 90 мм, с аккумулятором он весит всего 2 кг.

Ctrl Enter

Заметили ошЫ бку Выделите текст и нажмите Ctrl+Enter


Квантовые дальномеры.

4.1 Принцип действия квантовых дальномеров.
Принцип действия квантовых дальномеров основан на измерении времени прохождения светового импульса (сигнала) до цели и обратно.

Определение полярных координат точек;

Обслуживание пристрелки целей (создания реперов);

Изучение местности.



Рис. 13. ДАК-2М в боевом положении.

1- приемопередатчик; 2- углоизмерительная платформа (УИП); 3- тренога; 4- кабель;

5- аккумуляторная батарея 21НКБН-3,5.

4.2.2. Основные ТТХ ДАК-2М


№№

Наименование характеристики

Показатели

1

2

3

1

Диапазон и измерения, М:

Минимальная;

Максимальная;

До целей с угловыми размерами ≥2′



8000

2

Максимальная ошибка измерения, м, не более

10

3

Режим работы:

Количество измерений дальности в серии;

Частота измерений;

Перерыв между сериями измерений, мин;

Время готовности к измерению дальности после включения питания, сек., не более;

Время пребывания в режиме готовности к измерению дальности после нажатия кнопки «ПУСК», мин., не более.



1 измерение в 5-7 секунд
30
1

4

Количество измерений (импульсов0 без подзарядки АКБ, не менее

300

5

Диапазон углов наведения:

± 4-50

6

Точность измерения углов, д.у.

± 0-01

7

Оптические характеристики:

Увеличение, крат.;

Поле зрения, град.;

Перископичность, мм.



6

8

Питание:

Напряжение штатной АКБ 21НКБН-3,5, в;

Напряжение нештатных АКБ, В;

Напряжение бортовой сети, в, (с включением в буфер АКБ напряжением 22-29 в. При этом колебания и пульсация напряжения не должны превышать ± 0,9 в).



22-29

9

Масса дальномера:

В боевом положении без укладочного ящика и запасной АКБ, кг;

В походном положении (масса комплекта), кг



10

Расчет, чел.

2

4.2.3. Комплект (состав) ДАК-2М (рис. 13)


  1. Приемопередатчик.

  2. Углоизмерительная платформа (УИП).

  3. Тренога.

  4. Кабель.

  5. Аккумуляторная батарея 21НКБН-3,5.

  6. Одиночный комплект ЗИП.

  7. Укладочный ящик.

  8. Комплект технической документации (формуляр, ТО и ИЭ).

      1. Устройство составных частей ДАК-2М.

  1. Приемопередатчик - предназначен для ведения оптической (визуальной) разведки, измерения вертикальных углов , формирования светового зондирующего импульса, приема и регистрации зондирующего и отраженных от местных предметов (целей) световых импульсов, преобразования их в импульсы напряжения, формирования импульсов для запуска и остановки измерителя временных интервалов (ИВИ).
Приемопередатчик состоит из корпуса и головки. На лицевой стороне приемопередатчика установлены наглазники. Для защиты бинокуляра от механических повреждений имеются скобы.
а) Основными блоками и узлами приемопередатчика являются:

  1. оптический квантовый генератор (ОКГ);

  2. фотоприемное устройство (ФПУ);

  3. усилитель ФПУ (УФПУ);

  4. блок запуска;

  5. измеритель временных интервалов (ИВИ);

  6. преобразователь постоянного тока (ППТ);

  7. блок поджига (БП);

  8. преобразователь постоянного тока (ППН);

  9. блок управления (БУ);

  10. блок конденсаторов (БК);

  11. разрядник;

  12. головка;

  13. бинокуляр;

  14. механизм отсчета вертикальных углов.

ОГК предназначен для формирования мощного узконаправленного импульса излучения. Физической основой действия ОКГ является усиление света с помощью вынужденного излучения. Для этого в ОКГ применяются активный элемент и система оптической накачки.

ФПУ предназначен для приема отраженных от цели импульсов (отраженных световых импульсов), их обработки и усиления. Для их усиления в составе ФПУ имеется усилитель предварительный фотоприемного устройства (УПФПУ).

УФПУ предназначен для усиления и обработки импульсов, поступающих с УПФПУ, а также для формирования останавливающих импульсов для ИВИ.

БЗ предназначен для формирования импульсов запуска ИВИ и УФПУ и задержки импульса запуска ИВИ относительно импульса излучения ОКГ на время, необходимое на прохождение останавливающих импульсов через УПФПУ и УФПУ.

ИВИ предназначен для измерения временного интервала между фронтами запускающего и одного из трех останавливающих импульсов. Преобразования его в числовое значение дальности в метрах и индикации дальности до цели, а также индикации количества целей в створе излучения.

ТТХ ИВИ:

Диапазон измеряемых дальностей - 30 – 97500 м;

Разрешающая способность по Д - не хуже 3 м;

Минимальное значение измеряемой дальности может быть установлено:

1050 м ± 75 м

2025 м ± 75 м

3000 м ± 75 м

ИВИ измеряет дальность до одной их трех целей в пределах диапазона измеряемых дальностей по выбору операторов.

ППТ предназначен для блока конденсаторов накачки и накопительных конденсаторов БП, а также для выдачи стабилизированного напряжения питания в БУ.

БП предназначен для формирования высоковольтного импульса , ионизирующего разрядный промежуток импульсной лампы накачки.

ППН предназначен для выдачи стабилизированного напряжения питания УПФПУ, УФПУ, БЗ и стабилизации частоты вращения электродвигателя оптико-механического затвора.

БУ предназначен для управления работой узлов и блоков дальномера в заданной последовательности и контроля уровня напряжения источника питания.

БК предназначен для накопления заряда.

Разрядник предназначен для снятия заряда с конденсаторов путем замыкания их на корпус приемопередатчика.

Головка предназначена для размещения визирного зеркала. В верхней части головки имеется гнездо для установки визирной вешки. Для защиты стекла головки крепится бленда.

Бинокуляр является частью визира и предназначен для наблюдения за местностью, наведения на цель, а так же для считывания показаний индикаторов дальности, счетчика целей, индикации готовности дальномера к измерению дальности и состояния АКБ.

Механизм отсчета вертикальных углов предназначен для отсчета и индикации измеренных вертикальных углов.
б) Оптическая схема приемопередатчика (рис.14)

состоит из: - канала передатчика;

Оптические каналы приемника и визира частично совпадают (имеют общие объектив и дихроичное зеркало).

Канал передатчика предназначен для создания мощного монохроматического импульса малой продолжительности и малой угловой расходимостью луча и посылки его в направлении цели.

Его состав: - ОГК (зеркало, импульсная лампа, активный элемент-стержень, отражатель, призма);

Телескопическая система Галилея – для уменьшения угловой расходимости излучения.


Канал приемника предназначен для приема отраженного от цели импульса излучения и создания на фотодиоде ФПУ необходимого уровня световой энергии. Его состав: - объектив; - дихроичное зеркало.

Рис. 14 . Оптическая схема приемопередатчика.

Слева: 1- телескоп; 2- зеркало; 3- активный элемент; 4- отражатель; 5- импульсная лампа ИСП-600; 6- призма; 7,8- зеркала; 9- окуляр.

Разъем «ПИТАНИЕ»;

Разъем СРП (для подключения счетно-решающего прибора);

Клапан осушки.
На головке приемопередатчика расположены:

Клапан осушки;

Гнездо для визирной вешки.
Переключатель «ЦЕЛЬ» предназначен для измерения дальности до первой или второй или третьей цели, находящихся в створе излучения.

Переключатель «СТРОБИРОВАНИЕ» предназначен для установки минимальных дальностей 200, 400, 1000, 2000, 3000, ближе которых измерение дальности невозможно. Указанным минимальным дальностям соответствуют положения переключателя «СТРОБИРОВАНИЕ»:

400 м - «0,4»

1000 м – «1»

2000 м – «2»

3000 м – «3»

При установке положения переключателя «СТРОБИРОВАНИЕ» в положение «3» повышается чувствительность фотоприемного устройства к отраженным сигналам (импульсам).



Рис. 15. Органы управления ДАК-2М.

1- патрон осушки; 2-узел подсветки сетки; 3-переключатель СВЕТОФИЛЬТР; 4-переключатель ЦЕЛЬ; 5,13-скоба; 6-панель управления; 7-кнопка ИЗМЕРЕНИЕ; 8-кнопка ПУСК; 9-ручка ЯРКОСТЬ; 10-тумблер ПОДСВЕТКА; 11-тумблер ПИТАНИЕ; 12-разьем КОНТРОЛЬ ПАРАМЕТРОВ ; 14-переключатель СТРОБИРОВАНИЕ; 15-уровень; 16-отражатель; 17-шкала механизма отсчета вертикальных углов.






Рис. 16. Органы управления ДАК-2М.

Слева: 1-ремень; 2-предохранитель; 3-разьем ФОНАРЬ; 4-панель контроля; 5-кольцо; 6-разьем СРП; 7,11-кольца; 8-разьем питание; 9-кнопка КАЛИБРОВКА; 10-кнопка КОНТР.НАПР.

Справа: 1-гнездо; 2-головка; 3,9-клапан осушки; 4-корпус; 5-наглазник; 6-бинокуляр; 7-рукоятка вертикального наведения; 8-кронштейн.


  1. Углоизмерительная платформа (УИП)

УИП предназначена для крепления и горизонтирования приемопередатчика, поворота его вокруг вертикальной оси и измерение горизонтальных и дирекционных углов.

Состав УИП (рис.17)

Зажимное устройство;

Устройство;

Шаровой уровень.

УИП устанавливают на треноге и крепят через резьбовую втулку становым винтов.



Рис. 17 . Углоизмерительная платформа ДАК-2М.

1-рукоятка отводки червяка; 2-уровень; 3-ручка; 4-зажимное устройство; 5-основание с колесом; 6-барабан; 7-рукоятка точного наведения; 8-гайка; 9-лимб; 10-рукоятка; 11-резьбовая втулка; 12-основание; 13-винт подъемный.


  1. Тренога предназначена для установки приемопередатчика для установки приемопередатчика в рабочее положение на необходимой высоте. Тренога состоит из стола, трех парных штанг и трех выдвижных ног. Штанги соединены между собой шарниром и зажимным устройством, в котором винтом зажимается выдвижная нога. Шарниры крепятся к столу накладками.

  1. Аккумуляторная батарея 21 НКБН-3,5 предназначена для питания блоков дальномера постоянным током через кабель.
21 – количество аккумуляторов в батарее;

НК – никель-кадмиевая система аккумулятора;

Б – тип аккумулятора – безпанельная;

Н – технологическая особенность изготовления пластин – намазная;

3,5 – номинальная емкость АКБ в ампер-часах.


- кнопки «ИЗМЕРЕНИЕ 1» и «ИЗМЕРЕНИЕ 2» - для измерения дальности до первой или второй цели, находящихся в створе излучения.


Рис. 20. Органы управления ЛПР-1.

Сверху: 1-кожух; 2-рукоятка; 3-индекс; 4-кнопки ИЗМЕРЕНИЕ1 и ИЗМЕРЕНИЕ 2; 5-ремень; 6-панель; 7-ручка тумблера ПОДСВЕТКА; 8-окуляр визира; 9-винты; 10-окуляр визира; 11-вилка; 12-крышка аккумуляторного отсека; 13-ручка тумблера ВКЛ-ВЫКЛ.

Снизу: 1-патрон осушки; 2-ркмень; 3-кронштейн; 4-крышка.

На тыльной и нижней сторонах:

Кронштейн для установки прибора на кронштейн УИУ или на кронштейн - переходник при установке прибора на буссоль;

Патрон осушки;

Объектив визира;

Объектив телескопа;

Разъем с крышкой для подключения кабеля выносных кнопок.


Рис. 21 . Поле зрения индикатора ЛПР-1

1-индикатор дальности; 2,5,6-дицимальные точки; 3-индикатор готовности (зеленого цвета); 4-индикатор разряда АКБ (красного цвета).


Примечание . При отсутствии отраженного импульса во всех разрядах индикатора дальности высвечиваются нули (00000). При отсутствии зондирующего импульса во всех разрядах индикатора дальности высвечиваются нули и в третьем разряде - децимальная точка (Рис.21. положение 5).

При наличии в створе излучения (в разрыве угломерной сетки) нескольких целей при измерении загорается децимальная точка в младшем разряде индикатора дальности (Рис.21. положение 2).

При невозможности выведения экранирующих помех за пределы разрыва угломерной сетки , а также в тех случаях, когда помеха не наблюдается, а децимальная точка в младшем (правом) разряде индикатора дальности светится, наведите дальномер на цель так, чтобы цель перекрывала, возможно, большую площадь разрыва угломерной сетки. Измерьте дальность, после чего установите рукоятку ограничения минимальной дальности на значение дальности, превышающее измеренную величину на 50-100 метров и вновь измерьте дальность. Указанные действия повторяйте до тех пор , пока не погаснет децимальная точка в старшем разряде.

При высвечивании нулей во всех разрядах индикатора дальности и свечения децимальной точки в старшем разряде (левом) (Рис.21. положение 6) индикатора необходимо поворотом рукоятки ограничения минимальной дальности уменьшить минимальную измеряемую дальность до получения достоверного результата измерения.

2. Углоизмерительное устройство (Рис.22.).
Предназначено для установки дальномера, наведение дальномера и измерения горизонтальных, вертикальных и дирекционных углов




19

в Избранное в Избранном из Избранного 8

Уважаемые коллеги, поскольку главгад герой « – артиллерийский офицер, пришлось Вашему покорному слуге немного поразбираться в вопросах управления стрельбой в период незадолго до и начала ПМВ. Как я и подозревал, вопрос оказался ч-ски сложный, но все же кое-какую информацию удалось собрать. Данный материал ни в коей мере не претендует на полноту и всеохватность, это лишь попытка свести воедино все факты и догадки, которыми я сейчас располагаю.

Попытаемся «на пальцах» разобраться в особенностях артиллерийской стрельбы. Для того, чтобы навести орудие на цель, нужно выставить ему правильный прицел (вертикальный угол наведения) и целик (горизонтальный угол наведения). В сущности, к установке правильного прицела и целика сводится вся хитромудрая артиллерийская наука. Однако легко сказать, да сложно сделать.

Наиболее простой случай – когда наше орудие стационарно и стоит на ровном месте и нам надо поразить такую же стационарную цель. В этом случае, казалось бы, достаточно навести орудие так, чтобы ствол прямо на цель смотрел (и будет нам правильный целик), и узнать точное расстояние до цели. Тогда, пользуясь артиллерийскими таблицами, мы можем рассчитать угол возвышения (прицел), придать его орудию и бубух! Попадем точно в цель.

На самом деле это, конечно, не так – если цель достаточно далека, нужно брать поправки на ветер, на влажность воздуха, на степень износа орудия, на температуру пороха и т.д. и т.п.– и даже после всего этого, если цель не слишком велика, придется подолбить как следует из пушки, поскольку незначительные отклонения в форме и весе снарядов, а также весе и качестве зарядов, все равно приведут к известному разбросу попаданий (эллипс рассеивания). Но если мы выпустим некоторое количество снарядов, то в конце концов по закону статистики обязательно поразим цель.

Но мы отложим пока проблему поправок в сторону, и рассмотрим орудие и цель эдакими сферическими скакунами в вакууме. Допустим, стрельба производится на абсолютно ровной поверхности, при всегда одинаковой влажности, ни ветерка, орудие создано из невыгорающего в принципе материала и т.д. и т.п. В этом случае при стрельбе из стационарной пушки по стационарной цели действительно будет достаточно знать расстояние до цели, дающее нам угол вертикальной наводки (прицел) и направление на нее (целик)

А что делать, если цель или орудие не стационарны? Вот, например, как на флоте? Орудие расположено на корабле, который двигается куда-то с некоторой скоростью. Его цель, гадство, тоже на месте не стоит, она может идти под абсолютно любым углом к нашему курсу. И с абсолютно любой скоростью, каковая только взбредет в голову ее капитану. Что тогда?

Поскольку враг смещается в пространстве и с учетом того, что стреляем мы не из турболазера, мгновенно поражающего цель, а из орудия, снаряду которого нужно некоторое время для того, чтобы долететь до цели, нужно делать упреждение, т.е. стрелять не туда, где находится вражеский корабль в момент выстрела, а туда, где он будет секунд через 20–30, ко времени подлета нашего снаряда.

Вроде бы тоже несложно – рассмотрим на схеме.

Наш корабль находится в точке О, Вражеский – в точке А. Если, находясь в точке О, наш корабль выстрелит по врагу из пушки, то пока снаряд летит, вражеский корабль переместится в точку В. Соответственно, за время полета снаряда изменятся:

  1. Расстояние до корабля цели (было ОА, станет ОВ);
  2. Пеленг на цель (был угол S, а станет угол D)

Соответственно для того, чтобы определить поправку прицела, достаточно знать разницу между длиной отрезков ОА и ОВ, т.е величину изменения расстояния (далее – ВИР). А для того, чтобы определить поправку целика, достаточно знать разницу между углами S и D, т.е. величину изменения пеленга (далее – ВИП)

  1. Дистанцию до корабля-цели (ОА);
  2. Пеленг цели (угол S);
  3. Курс цели;
  4. Скорость цели.

Теперь рассмотрим, каким образом добывалась информация, нужная для расчета ВИР и ВИП.

1. Дистанция до корабля-цели – очевидно, по данным дальномера. А еще лучше – нескольких дальномеров, желательно – не менее трех. Тогда наиболее отклоняющееся значение можно отбросить, а от двух других взять среднее арифметическое. Определение расстояния по нескольким дальномерам очевидно эффективнее

2. Пеленг цели (курсовой угол, если угодно) – с точностью «пол-палец-потолок» определяется любым угломером, но для более точного измерения желательно иметь визир – устройство с качественной оптикой, способное (в том числе) очень точно определять курсовой угол цели. У визиров, предназначенных для центральной наводки, положение корабля-цели определялось с погрешностью в 1-2 деления целика прицела артиллерийского орудия (т.е. 1-2 тысячных дистанции, на дистанции в 90 кбт положение корабля определялось с точностью до 30 метров)

3. Курс цели. Вот для этого уже требовались арифметические расчеты и специальный артиллерийский бинокль, с нанесенными на него делениями. Делалось это так – сперва нужно было идентифицировать корабль-цель. Вспомнить его длину. Измерить дистанцию до него. Перевести длину корабля в количество делений на артиллерийском бинокле для данной дистанции. Т.е. посчитать: «Тааак, длина этого корабля 150 метров, на 70 кбт корабль длиной в 150 метров должен занимать 7 делений артиллерийского бинокля». После этого посмотреть на корабль в артиллерийский бинокль и определить, какое количество делений он по факту там занимает. Если, к примеру, корабль занимает 7 делений, это значит, что он развернут к нам всем бортом. А если меньше (допустим – 5 делений) – это означает, что корабль расположен к нам под каким-то углом. Посчитать, опять же, не слишком сложно – если нам известна длина корабля (т.е. гипотенуза АВ, в примере равна 7) и мы с помощью артбинокля определили, длину ее проекции (т.е катет АС в примере – длина 5) то уж угол S посчитать – дело житейское.

Единственно, что хотелось бы добавить – роль артиллерийского бинокля мог выполнять все тот же визир

4. Скорость цели. Вот это было уже сложнее. В принципе, скорость можно было бы прикинуть «на глаз» (с соответствующей точностью), но можно, конечно, точнее – зная дистанцию до цели и ее курс, можно понаблюдать за целью и определить ее скорость углового смещения – т.е. как быстро меняется пеленг на цель. Дальше определяется пройденное кораблем расстояние (опять же – ничего сложнее прямоугольных треугольников считать не придется) и его скорость.

Тут, правда, можно спросить – а зачем, к примеру, нам так все усложнять, если можно просто измерить изменения ВИП, понаблюдав за кораблем-целью в визир? Но тут дело такое – изменение ВИП нелинейно, а потому данные текущих измерений быстро устаревают.

Следующий вопрос – чего мы хотим от системы управления огнем (СУО)? А вот чего.

СУО должно получать следующие данные:

  1. Дистанцию до вражеского корабля-цели и пеленг на него;
  2. Курс и скорость собственного корабля.

При этом, естественно, данные должны постоянно обновляться со всей возможной скоростью

  1. Курс и скорость вражеского корабля-цели;
  2. Преобразовать курс/скорости в модель движения кораблей (своего и вражеского), с помощью которой можно прогнозировать положение кораблей;
  3. Упреждение для стрельбы с учетом ВИР, ВИП и времени полета снаряда;
  4. Прицел и целик с учетом упреждения (с учетом всевозможных поправок (температура пороха, ветер, влажность и проч)).

СУО должно передать прицел и целик с дающего прибора в боевой рубке (центральном посту) на артиллерийские орудия так, чтобы функции наводчиков при орудиях были минимальны (в идеале – собственные прицелы орудий не используются вообще).

СУО должно обеспечить залповую стрельбу орудий, выбранных старшим артиллеристом в им же выбранный момент времени.

Приборы управления артиллерийским огнем обр 1910 г завода Н.К. Гейслер и К

Устанавливались на русских дредноутах (как балтийских, так и черноморских) и включали в себя много механизмов различного назначения. Все приборы можно подразделить на дающие (в которые вводились данные) и принимающие (которые выдавали некоторые данные). Помимо них существовало множество вспомогательных приборов, обеспечивающих работу остальных, но о них мы говорить не будем, перечислим основные:

Приборы для передачи показаний дальномеров

Дающие – располагались в дальномерной рубке. Имели шкалу, позволяющую установить дистанцию от 30 до 50 кбт с точностью до полкабельтова, от 50 до 75 кбт – 1 кабельтов и от 75 до 150 кбт – 5 кабельтов. Оператор, определив дальность при помощи дальномера, устанавливал соответствующее значение вручную

Принимающие – располагались в боевой рубке и ЦП, имели абсолютно такой же циферблат, как и дающие. Как только оператор дающего прибора задавал некое значение – оно тут же отражалось на циферблате принимающего прибора.

Приборы для передачи направления целей и сигналов

Довольно забавные приборы, задачей которых было указать корабль, по которому следует вести огонь (но отнюдь не пеленг на этот корабль), и отдавались приказы о виде атаки «дробь/атака/пристрелка/залп/беглый огонь»

Дающие приборы находились в боевой рубке, принимающие – у каждого казематного орудия и по одному на каждую башню. Работали аналогично приборам для передачи показаний дальномеров.

Целиковые приборы (приборы для передачи горизонтального прицела)

Тут начинаются неясности. С дающими приборами более-менее все понятно – они располагались в боевой рубке и имели шкалу на 140 делений, соответствовавших делениям орудийных прицелов (т.е. 1 деление – 1/1000 дистанции) Принимающие приборы размещались непосредственно на прицельных приспособлениях орудий. Работала система так – оператор дающего прибора в боевой рубке (ЦП) устанавливал на шкале определенное значение. Соответственно, то же значение показывалось и на принимающих приборах, после чего задачей наводчика было крутить прицельные механизмы до тех пор, пока горизонтальная наводка орудия не совпадет со стрелкой на приборе. Тогда – вроде бы ажур, орудие наведено правильно

Есть подозрение, что прибор выдавал не угол горизонтального прицела, а только поправку на упреждение. Непроверено.

Приборы для передачи высоты прицела

Самый сложный агрегат.

Дающие приборы располагались в боевой рубке (ЦП). В прибор вручную вводились данные о дистанции до цели и ВИР (величина изменения расстояния, если кто забыл), после чего данный прибор начинал чем-то там щелкать и выдавать дистанцию до цели в текущем времени. Т.е. прибор самостоятельно прибавлял/отнимал ВИР от дистанции и передавал эту информацию на принимающие приборы.

Принимающие приборы так же, как и принимающие целиковые приборы, устанавливались на прицельных приспособлениях орудий. Но на них появлялась не дистанция, а прицел. Т.е. приборы для передачи высоты прицела самостоятельно преобразовывали дистанцию в угол прицела и выдавали ее на орудия. Процесс выполнялся постоянно, т.е. в каждый момент времени стрелка принимающего прибора показывала актуальный прицел на текущий момент. Более того – в принимающий прибор этой системы можно было внести поправки (подсоединив нескольких эксцентриков). Т.е. если, например, орудие было сильно расстреляно и его дальность стрельбы падала, скажем, на 3 кбт по сравнению с новым, достаточно было установить соответствующий эксцентрик – теперь к углу прицела, переданного с дающего прибора, конкретно для этого орудия прибавлялся угол, призванный скомпенсировать трехкабельтовый недострел. Это были индивидуальные поправки, для каждого орудия.

Точно по такому же принципу можно было вводить корректировки на температуру пороха (она принималась такой же, как температура в погребах), а также корректировки на тип заряда/снаряда «учебный/боевой/практический»

Но и это еще не все.

Дело в том, что точность установки прицела выходила «плюс-минус трамвайная остановка с поправкой на азимут Полярной звезды» Несложно было ошибиться как с дальностью до цели, так и с размером ВИР. Особый цинизм заключался еще и в том, что дальность от дальномерщиков всегда поступала с известным запаздыванием. Дело в том, что дальномерщик определял дальность до объекта в момент начала измерения. Но чтобы определить эту дальность, он должен был произвести ряд действий, в том числе – «совмещение картинки» и т.д. Все это требовало определенного времени. Еще какое-то время требовалось на то, чтобы сообщить определенную дальность и выставить ее значение на дающем приборе для передачи показаний дальномера. Таким образом, по различным данным, старший артиллерийский офицер видел на принимающем приборе передачи показаний дальномеров не текущую дальность, а ту, которая была едва ли не минуту тому назад.

Так вот, дающий прибор для передачи высоты прицела давал старшему артиллеристу для этого самые широкие возможности. В любой момент работы прибора можно было вручную ввести поправку на дальность или на размер ВИР, и прибор с момента ввода поправки продолжал расчет уже с ее учетом. Можно было вообще отключить прибор и выставлять значения прицела вручную. А еще можно было выставлять значения «рывком» – т.е. если, к примеру, наш прибор показывает прицел в 15 град, то мы можем дать три залпа подряд – на 14, на 15 и на 16 град не дожидаясь падений снарядов и не вводя корректуру по дальности/ВИРу, но первоначальная настройка автомата при этом не сбивалась.

И, наконец,

Ревуны и звонки

Дающие приборы располагаются в боевой рубке (ЦП) а сами ревуны – по одному у каждого орудия. Когда управляющий огнем хочет дать залп – он замыкает соответствующие цепи и комендоры при орудиях производят выстрелы.

К сожалению, говорить о Гейслере образца 1910 г как о полноценной СУО решительно нельзя. Почему?

  1. СУО Гейслера не располагало прибором, позволяющим определить пеленг на цель (визира не было);
  2. Не было прибора, который мог бы посчитать ее курс и скорость корабля-цели. Так что получив дальность (от прибора передачи показаний дальномеров) и определив подручными средствами пеленг на нее, все остальное нужно было считать вручную;
  3. Не имелось также приборов, позволяющих определить курс и скорость собственного корабля – их тоже нужно было получать «подручными средствами», т.е не входящими в комплект Гейслера;
  4. Не было прибора автоматического расчета ВИР и ВИП – т.е. получив и рассчитав курсы/скорости собственного корабля и цели, нужно было считать и ВИР и ВИП опять же вручную.

Таким образом, несмотря на наличие весьма продвинутых приборов, автоматически считающих высоту прицела, СУО Гейслера все равно требовало очень большого количества ручных расчетов – и это не было хорошо.

СУО Гейслера не исключало, да и не могло исключить использование орудийных прицелов наводчиками орудий. Дело в том, что автомат высоты прицела рассчитывал прицел… конечно же для момента, когда корабль стоит на ровном киле. А корабль испытывает как продольную, так и поперечную качку. И вот ее-то СУО Гейслера не учитывало вообще и никак. Поэтому есть предположение, крайне похожее на правду, что в задачу наводчика орудия входило такое «подкручивание» наводки, которое позволяло бы компенсировать качку корабля. Понятно, что «крутить» нужно было постоянно, хотя есть сомнения, что 305-мм орудия удавалось бы «стабилизировать» вручную. Также, если я прав в том, что СУО Гейслера передавало не угол горизонтальной наводки, а только упреждение, то наводчик каждого орудия самостоятельно наводил свою пушку в горизонтальной плоскости и только упреждение брал по указке свыше.

СУО Гейслера позволяло вести залповую стрельбу. Но старший артиллерист не мог дать одновременного залпа – он мог дать сигнал, по которому следовало открыть огонь , а это не одно и тоже. Т.е. представим себе картину – четыре башни «Севастополя», в каждой наводчики «подкручивают» прицелы, компенсируя качку. Вдруг – ревун! У кого-то прицел в норме, он стреляет, а кто-то не докрутил еще, он докручивает, дает выстрел… а разница в 2–3 секунды весьма существенно увеличивает разброс снарядов. Таким образом, дать сигнал – еще не означает получить единовременный залп.

Но вот с чем СУО Гейслера справлялась по настоящему хорошо – так это с передачей данных от дающих приборов в боевой рубке к принимающим у орудий. Тут никаких проблем не было, и система оказалась весьма надежной и быстродействующей.

Иными словами, приборы Гейслера образца 1910 г представляли собой не столько СУО, сколько способ передачи данных от главарта к орудиям (хотя наличие автоматического расчета высоты прицела дает право отнести Гейслер именно к СУО).

В СУО Эриксона появлялся визир, при этом он был связан с электромеханическим прибором, выдающим угол горизонтальной наводки. Таким образом, по всей видимости, поворот визира приводил к автоматическому смещению стрелок на прицельных приспособлениях орудий.

В СУО Эриксона было 2 центральных наводчика, один из них занимался горизонтальной наводкой, второй – вертикальной, причем именно они (а не наводчики орудий) учитывали угол качки – этот угол постоянно измерялся и прибавлялся к углу наводки на ровном киле. Так что наводчикам оставалось только подкручивать свои орудия так, чтобы прицел и целик соответствовали значениям стрелок на прицельных приспособлениях. Наводчику больше не нужно было смотреть в орудийный прицел.

Вообще говоря, попытка «угнаться» за качкой, стабилизируя орудие вручную, выглядит странно. Куда проще было бы решить вопрос, используя иной принцип – прибор, который замыкал бы цепь и производил выстрел тогда, когда корабль оказывался на ровном киле. В России имелись приборы контроля качки, основанные на работе маятника. Но увы – они обладали изрядной погрешностью и не могли быть использованы для артиллерийской стрельбы. Правду сказать, у немцев такой прибор появился только после Ютланда, а Эриксон все же выдавал результаты, не худшие, чем «ручная стабилизация».

Залповая стрельба осуществлялась по новому принципу – теперь, когда наводчики в башне были готовы, они нажимали на специальную педаль, а старший артиллерист замыкал цепь, нажимая собственную педаль в боевой рубке (ЦП) по мере готовности башен. Т.е. залпы стали действительно единовременными.

Был ли у Эриксона приборы автоматического расчета ВИР и ВИП – мне неизвестно. А вот что известно достоверно - по состоянию на 1911–1912 гг. СУО Эриксона была трагически неготова. Плохо работали механизмы передачи от дающих приборов к принимающим. Процесс занимал куда больше времени, чем в СУО Гейслера, но при этом постоянно происходили рассогласования. Приборы контроля качки работали слишком медленно, так что прицел и целик центральных наводчиков «не успевали» за качкой – с соответствующими последствиями для точности стрельбы. Что было делать?

Российский императорский флот пошел по достаточно оригинальному пути. На новейшие линкоры установили систему Гейслера, образца 1910 г. А поскольку из всего СУО там только и было, что приборы расчета высоты прицела, то, по всей видимости, решено было не ждать, пока доведут до ума СУО Эриксона, не пытаться купить новое СУО (допустим, у англичан) целиком, а приобретать/доводить до ума недостающие приборы и попросту дополнять ими систему Гейслера.

Интересную последовательность приводит господин Serg на цусиме: http://tsushima.su/forums/viewtopic.php?id=6342&p=1

11г январь на Севах МТК решил установить систему Эриксона.
12г май Эриксон не готов, заключен контракт с Гейслером.
12г сентябрь заключон контракт с Эриксоном на установку дополнительных приборов.
13г сентябрь доработка Эриксоном прибора Поллена и АВП Гейслера.
14г январь монтаж комплекта приборов Поллена на ПВ.
14г июнь завершены испытания приборов Поллена на ПВ
15г декабрь заключение контракта на разработку и установку ЦН.
16г осень завершена установка ЦН.
17г стрельбы с ЦН.

В результате СУО наших «Севастополей» стало той еще сборной солянкой. Автоматы расчета ВИР и ВИП поставили английские, купленные у Поллэна. Визиры – у Эриксона. Автомат расчета высоты прицела сначала был гейслеровский, потом заменили на Эриксона. Для определения курсов поставили гироскоп (но не факт, что в ПМВ, может и позднее…) В общем, примерно в 1916 г. наши «Севастополи» получили вполне первоклассную по тем временам систему центральной наводки.

А что у наших заклятых друзей?

Похоже на то, что лучше всего к Ютланду дело обстояло у англичан. Парни с острова придумали так называемый «Столик Дрейера», максимально автоматизировавший процессы выработки вертикального и горизонтального прицелов.

Брать пеленг и определять дистанцию до цели англичанам приходилось вручную, но курс и скорость вражеского корабля считал автоматически прибор Дюмареска. Опять же, насколько я понял, результаты этих расчетов автоматически передавались на «столик Дрейера», который получал данные о собственном курсе/скорости от какого-то аналога спидометра и гирокомпаса, сам выстраивал модель движения кораблей, рассчитывал ВИР и ВИП. У нас же, даже после появления прибора Поллэна, который рассчитывал ВИР, передача ВИР в автомат расчета высоты прицела происходила так – оператор читал показания Поллэна, потом вводил их в автомат расчета высоты прицела. У англичан все происходило автоматически.

Я попробовал свести данные по СУО в единую таблицу, получилось вот что:

Увы мне – вероятно таблица грешит многими ошибками, данные о немецком СУО чрезвычайно лапидарны: http://navycollection.narod.ru/library/Haase/artillery.htm

А по английским – на английском языке, которого я не знаю: http://www.dreadnoughtproject.org/tfs/index.php/Dreyer_Fire_Control_Table

Как решили вопрос англичане с компенсацией продольной/поперечной качки – мне неизвестно. Но у немцев никаких компенсирующих приборов не было (появились только после Ютланда).

Вообще говоря, получается, что СУО балтийских дредноутов все же уступало англичанам, и находилось примерно на одном уровне с немцами. Правда, за одним исключением.

На немецком «Дерфлингере» имело место быть 7 (прописью – СЕМЬ) дальномеров. И все они замеряли дистанцию до врага, а в автомат расчета прицела попадало усредненное значение. На отечественных «Севастополях» изначально стояло всего два дальномера (были еще т.н. дальномеры Крылова, но они представляли собой не что иное, как усовершенствованные микрометры Люжоля-Мякишева и не обеспечивали качественных замеров на больших дистанциях).

С одной стороны, казалось бы, что такие дальномеры (намного лучшего качества, чем у британцев) как раз и обеспечили германцам быструю пристрелку в Ютланде, но так ли это? Тот же «Дерфлингер» пристрелялся только с 6-го залпа, да и то в общем-то случайно (по идее шестой залп должен был дать перелет, главарт «Дерфлингера» Хазе пытался взять британца в вилку, однако, к его удивлению, произошло накрытие). «Гебен» в общем тоже не показал блестящих результатов. Но нужно учесть, что немцы все же стреляли куда лучше англичан, наверное какая-то заслуга немецких дальномеров в этом есть.

Но я полагаю, что лучшая точность немецких кораблей – это отнюдь не результат превосходства над англичанами в материальной части, а совершенно иная система тренировки артиллеристов.

Тут я позволю себе сделать некоторые выдержки из книги Hector Charles Bywater and Hubert Cecil Ferraby «Strange Intelligence. Memoirs of Naval Secret Service». Constable, London, 1931: http://militera.lib.ru/h/bywater_ferraby/index.html

Под влиянием адмирала Томсена немецкий военно-морской флот начал эксперименты со стрельбой на большие дистанции в 1895 году… …Новосозданный флот может себе позволить быть менее консервативным, чем флоты со старыми традициями. И потому в Германии всем новинкам, способным усилить боевую мощь флота, заранее гарантировалось официальное одобрение….

Немцы, убедившись, что стрельба на большие дистанции осуществима на практике, немедленно придали своим бортовым пушкам максимально большой угол наводки…

…Если орудийные башни немцев уже в 1900 году позволяли орудиям поднимать стволы на 30 градусов, то на британских кораблях угол подъема не превышал 13,5 градусов, что давало немецким кораблям существенные преимущества. Если бы война разразилась в то время, немецкий флот значительно, даже в решающей степени, превзошел бы нас в точности и дальности ведения огня….

…Централизованной системы управления огнем «Fire-director», установленной, как уже отмечалось, на кораблях британского флота, у немцев не было еще и некоторое время после Ютландской битвы, но эффективность их огня была подтверждена результатами этого сражения.

Конечно, эти результаты были плодом двадцати лет интенсивного труда, настойчивого и тщательного, что вообще свойственно немцам. На каждую сотню фунтов, которые мы выделяли в те годы на исследования в области артиллерии, Германия выделяла тысячу. Приведем всего один пример. Агенты Секретной службы узнали в 1910 году, что немцы на учения выделяют намного больше снарядов, чем мы - для крупнокалиберных пушек - на 80 процентов больше выстрелов. Учения с боевыми стрельбами по бронированным кораблям-мишеням были у немцев постоянной практикой, тогда как в британском флоте они были очень редки или даже совсем не проводились….

…В 1910 году на Балтике состоялись важные учения с использованием прибора «Richtungsweiser», установленного на борту кораблей «Нассау» и «Вестфален». Был продемонстрирован высокий процент попаданий по подвижным целям с дистанций до 11 000 метров, и после определенных усовершенствований, были организованы новые практические испытания.

Но в марте 1911 года была получена точная и многое объясняющая информация. Она касалась результатов учебных стрельб, проводившихся дивизией немецких боевых кораблей, оснащенных 280-мм пушками, по буксируемой мишени на дистанции в среднем в 11 500 метров при довольно большом волнении моря и умеренной видимости. 8 процентов снарядов попали в цель. Этот результат намного превосходил все, что нам сообщалось раньше. Потому эксперты проявили скептицизм, но свидетельство было вполне надежным.

Было совершенно ясно, что поход был предпринят для проверки и сравнения достоинств систем целеуказания и наведения. Одна из них уже стояла на броненосце «Эльзас», а другая, экспериментальная, была установлена на «Блюхере». Место стрельб находилось в 30 милях к юго-западу от Фарерских островов, целью был легкий крейсер, входивший в дивизию. Понятно, что стреляли не по самому крейсеру. Он, как выражаются в британском флоте, был «сдвинутой целью», то есть, прицеливание осуществлялось по кораблю-цели, сами же пушки наводились со сдвигом на определенный угол и стреляли. Проверка очень проста - если приборы работают правильно, то снаряды упадут точно в рассчитанном удалении от кормы корабля-цели.

Принципиальным преимуществом такого метода, изобретенного, если верить их собственным утверждениям, немцами, является то, что он, не ухудшая точности полученных результатов, позволяет заменить на стрельбах обычные цели, которые из-за тяжелых двигателей и механизмов можно буксировать лишь на малой скорости и обычно при хорошей погоде.

Оценку стрельбы «со сдвигом» можно было бы назвать только приблизительной в определенной мере, потому что в ней недостает окончательного факта - пробоин в цели, но с другой стороны, и полученные при ней данные достаточно точны для всех практических целей.

Во время первого опыта «Эльзас» и «Блюхер» вели огонь с дистанции 10 000 метров по цели, которую изображал легкий крейсер, идущий на скорости от 14 до 20 узлов.

Эти условия были необычно жесткими для той эпохи, и неудивительно, что донесение о результатах этих стрельб вызвало дискуссии, и даже его достоверность опровергалась некоторыми британскими экспертами по корабельной артиллерии. Тем не менее, эти сведения были правдивы, и результаты испытаний действительно оказались невероятно успешными.

С 10 000 метров «Эльзас», вооруженный старыми 280-мм пушками, дал трехорудийный залп по кильватеру цели, то есть, если бы орудия были наведены не «со сдвигом», снаряды попали бы точно в цель. То же самое легко удалось броненосцу и при стрельбе с дистанции в 12 000 метров.

«Блюхер» был вооружен 12 новыми орудиями калибром 210 мм. Ему тоже легко удалось поразить цель, большая часть снарядов попала в непосредственной близости или прямо в кильватерную струю, оставляемую крейсером-целью.

На второй день дистанция была увеличена до 13 000 метров. Погода была хорошей, и небольшое волнение качало корабли. Несмотря на увеличившуюся дистанцию «Эльзас» отстрелялся хорошо, что до «Блюхера», то он превзошел все ожидания.

Двигаясь на скорости 21 узел, броненосный крейсер поймал «в вилку» корабль-цель, идущий на 18 узлах, с третьего залпа. Причем, согласно оценкам экспертов, находившихся на крейсере-цели, можно было бы с уверенностью констатировать попадание одного или нескольких снарядов в каждом из одиннадцати последовавших за этим залпов. Учитывая сравнительно небольшой калибр пушек, большую скорость, с которой шли и «стрелок» и цель, и состояние моря, результат стрельбы по состоянию на то время можно было бы назвать феноменальным. Все эти подробности, как и многое другое, содержались в рапорте, отправленном нашим агентом в Секретную службу.

Когда донесение попало в Адмиралтейство, некоторые старые офицеры посчитали его ошибочным либо фальшивым. Агента, составившего рапорт, вызвали в Лондон для обсуждения вопроса. Ему заявили, что указанные им в рапорте сведения о результатах испытаний являются «абсолютно невозможными», что ни один корабль не сможет поразить на ходу движущуюся цель на расстоянии свыше 11 000 метров, в общем, что все это выдумка или ошибка.

Совершенно случайно, эти результаты немецких стрельб стали известны за несколько недель до первого испытания британским флотом системы управления огнем адмирала Скотта, прозванной «Fire-director». Корабль Его Величества «Нептун» был первым кораблем, на котором эта система была установлена. Он провел учебные стрельбы в марте 1911 года с великолепными результатами. Но официальный консерватизм затормозил внедрение прибора на других кораблях. Это положение продлилось до ноября 1912 года, когда прошли сравнительные испытания системы «Director», установленной на корабле «Тандерер», и старой системы, установленной на «Орионе»

Сэр Перси Скотт описал учения следующими словами:

« Дистанция составляла 8200 метров, корабли-»стрелки» шли на скорости 12 узлов, мишени буксировали с такой же скоростью . Оба корабля одновременно открыли огонь сразу после сигнала. «Тандерер» стрелял очень хорошо. «Орион» посылал свои снаряды по всем направлениям. Через три минуты был подан сигнал «Прекратить огонь!», и проведена проверка мишени. В результате выяснилось, что «Тандерер» сделал на шесть попаданий больше, чем «Орион».

Насколько нам известно, первые боевые стрельбы в британском флоте на дистанцию в 13 000 метров состоялись в 1913 году , когда корабль «Нептун» стрелял по цели с такого расстояния.

Те, кто следил за развитием инструментов и приемов ведения артиллерийского огня в Германии, знали, чего нам следует ожидать. И если что и оказалось сюрпризом, так только тот факт, что в Ютландской битве соотношение количества снарядов, попавших в цель, к общему числу выпущенных снарядов не превысило 3,5.%

Возьму на себя смелость утверждать – качество немецкой стрельбы заключалось в системе подготовки артиллеристов, каковая была много лучше, чем у англичан. В результате чего немцы профессионализмом компенсировали некоторое превосходство британцев в СУО.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

КУРСОВАЯ РАБОТА

по дисциплине

«Физические основы измерений»

Тема: Дальномер

№ студенческой группы исполнителя – ЭС-2-08

Фамилия И. О. исполнителя – Прусаков А. А.

Фамилия И. О. руководителя – Русанов К. Е.

Москва 2010

    Введение ______________________________________________________3

2. Виды дальномеров ______________________________________________5

3. Лазерный дальномер _____________________________________________6

3.1. Физические основы измерений и принцип действия _________________8

3.2 Особенности конструкции и принцип работы. Виды и применение ____12

4. Оптический дальномер __________________________________________19

4.1. Физические основы измерений и принцип действия ________________21

4.1.2 Нитяной дальномер с постоянным углом ________________________23

4.1.3 Измерение нитяным дальномером наклонного расстояния __________25

4.2 Особенности конструкции и принцип работы ______________________27

5. Вывод ________________________________________________________29

6. Библиографический список ______________________________________30

1. Введение

Дальномер - устройство, предназначенное для определения расстояния от наблюдателя до объекта. Используется вгеодезии, для наводки на резкость вфотографии, в прицельных приспособленияхоружия, систем бомбометания и т.д.

Геоде́зия - отрасль производства, связанная с измерениями на местности. Является неотъемлемой частью строительных работ. С помощью геодезии проекты зданий и сооружений переносятся с бумаги в натуру с миллиметровой точностью, рассчитываются объемы материалов, ведется контроль за соблюдением геометрических параметров конструкций. Также находит применение вгорном деле для расчетавзрывных работ и объемов породы.

Основные задачи геодезии:

Среди многих задач геодезии можно выделить «долговременные задачи» и «задачи на ближайшие годы».

К долговременным задачам относятся:

    определение фигуры, размеров и гравитационного поля Земли;

    распространение единой системы координат на территорию отдельного государства, континента и всей Земли в целом;

    выполнение измерений на поверхности земли;

    изображение участков поверхности земли на топографических картах и планах;

    изучение глобальных смещений блоков земной коры.

В настоящее время основные задачи на ближайшие годы в России следующие:

    создание государственных и локальных кадастров:земельногонедвижимостиводноголесного, городского и т. д.;

    топографо-геодезическое обеспечение делимитации (определения) и демаркации (обозначения) государственной границы России;

    разработка и внедрение стандартов в области цифрового картографирования;

    создание цифровых и электронных карт и их банков данных;

    разработка концепции и государственной программы повсеместного перехода на спутниковые методы автономного определения координат;

    создание комплексного национального атласа России и другие.

Лазерная дальнометрия является одной из первых областей практического применения лазеров в зарубежной военной технике. Первые опыты относятся к 1961 году, а сейчас лазерные дальномеры используются и в наземной военной технике (артиллерийские, таковые), и в авиации (дальномеры, высотомеры, целеуказатели), и на флоте. Эта техника прошла боевые испытания во Вьетнаме и на Ближнем Востоке. В настоящее время ряд дальномеров принят на вооружение во многих армиях мира.

Рис. 2 - Лазерный прицел-дальномер. Впервые применялся на Т72А

2. Виды дальномеров

Дальномерные приспособления делятся на активные и пассивные:

    активные:

    • звуковой дальномер

      световой дальномер

      лазерный дальномер

    пассивные:

    • дальномеры, использующие оптическийпараллаксдальномерный фотоаппарат)

      дальномеры, использующие сопоставление объекта какому-либо образцу

Принцип действия дальномеров активного типа состоит в измерении времени, которое затрачивает посланный дальномером сигнал для прохождения расстояния до объекта и обратно. Скорость распространения сигнала (скорость света или звука) считается известной.

Измерение расстояний дальномерами пассивного типа основано на определении высоты h равнобедренного треугольника ABC, например по известной стороне AB = l (базе) и противолежащему острому углу b (т. н. параллактическому углу). При малых углах b (выраженных в радианах)

Одна из величин, l или b, обычно является постоянной, а другая - переменной (измеряемой). По этому признаку различают дальномеры с постоянным углом и дальномеры с постоянной базой.

3. Лазерный дальномер

Лазерный дальномер - прибо р для измерения расстояний с применениемлазерного луча.

Широко применяется в инженернойгеодезии, притопографической съёмкевоенном деленавигации, вастрономических исследованиях, в фотографии.

Лазерный дальномер это устройство, состоящее изимпульсного лазера идетектора излучения. Измеряя время, которое затрачивает луч на путь до отражателя и обратно и зная значениескорости света, можно рассчитать расстояние между лазером и отражающим объектом.

Рис.1 Современные модели лазерных дальномеров.

электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:

где L - расстояние до объекта,скорость света в вакуумепоказатель преломления среды, в которой распространяется излучение, t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Ясно, что чем короче импульс, тем лучше.

3.1. Физические основы измерений и принцип действия

Задача определения расстояния между дальномером и целью сводится к измерению соответствующего интервала времени между зондирующим сигналом и сигналом, отражения от цели. Различают три метода измерения дальности в зависимости от того, какой характер модуляции лазерного излучения используется в дальномере: импульсный, фазовый или фазово-импульсный. Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылается зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру, то он останавливает работу счетчика. По временному интервалу автоматически высвечивается перед оператором расстояние до объекта. Оценим точность такого метода дальнометрирования, если известно, что точность измерения интервала времени между зондирующим и отраженным сигналами соответствует 10 в -9 с. Поскольку можно считать, что скорость света равна 3*10в10 см/с, получим погрешность в изменении расстояния около 30 см. Специалисты считают, что для решения ряда практических задач этого вполне достаточно.

При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону. При этом интенсивность излучения меняется в значительных пределах. В зависимости от дальности до объекта изменяется фаза сигнала, упавшего на объект. Отраженный от объекта сигнал придет на приемное устройство также с определенной фазой, зависящей от расстояния. Оценим погрешность фазового дальномера, пригодного работать в полевых условиях. Специалисты утверждают, что оператору не сложно определить фазу с ошибкой не более одного градуса. Если же частота модуляции лазерного излучения составляет 10 Мгц, то тогда погрешность измерения расстояния составит около 5 см.

По принципу действия дальномеры подразделяются на две основные группы, геометрического и физического типов.

Рис.2 Принцип действия дальномера

Первую группу составляют геометрические дальномеры. Измерение расстояний дальномером такого типа основано на определении высоты h равнобедренного треугольника ABC (рис. 3) например по известной стороне АВ = I (базе) и противолежащему острому углу. Одна из величин, I обычно является постоянной, а другая - переменной (измеряемой). По этому признаку различают дальномеры с постоянным углом и дальномеры с постоянной базой. Дальномер с постоянным углом представляет собой подзорную трубу с двумя параллельными нитями в поле зрения, а базой служит переносная рейка с равноотстоящими делениями. Измеряемое дальномером расстояние до базы пропорционально числу делений рейки, видимых в зрительную трубу между нитями. По такому принципу работают многие геодезические инструменты (теодолиты, нивелиры и др.). Относительная погрешность нитяного дальномера - 0,3-1%. Более сложные оптические дальномеры с постоянной базой, построены на принципе совмещения изображений объекта, построенными лучами прошедшими различные оптические системы дальномера. Совмещение производится с помощью оптического компенсатора, расположенного в одной из оптических систем, а результат измерения прочитывается по специальной шкале. Монокулярные дальномеры с базой 3-10 см широко применяются в качестве фотографических дальномеров. Погрешность оптических дальномеров с постоянной базой менее 0,1% от измеряемого расстояния.

Принцип действия дальномера физического типа состоит в измерении времени, которое затрачивает посланный дальномером сигнал для прохождения расстояния до объекта и обратно. Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Различают импульсный и фазовый методы измерения дальности.

При импульсном методе к объекту посылается зондирующий импульс, который запускает временной счетчик в дальномере. Когда отраженный объектом импульс возвращается к дальномеру, то он останавливает работу счетчика. По временному интервалу (задержке отраженного импульса), с помощью встроенного микропроцессора, определяется расстояние до объекта:

где: L - расстояние до объекта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

Рис. 3 - Принцип действия дальномера геометрического типа
АВ -база, h -измеряемое расстояние

При фазовом методе - излучение модулируется по синусоидальному закону с помощью модулятора (электрооптического кристалла, меняющего свои параметры под воздействием электрического сигнала). Отраженное излучение попадает в фотоприемник, где выделяется модулирующий сигнал. В зависимости от дальности до объекта изменяется фаза отраженного сигнала относительно фазы сигнала в модуляторе. Измеряя разность фаз, измеряется расстояние до объекта.

3.2 Особенности конструкции и принцип работы. Виды и применение

Первый лазерный дальномер ХМ-23 прошел испытания, и был принят на вооружение армий. Он рассчитан на использование в передовых наблюдательных пунктах сухопутных войск. Источником излучения в нем является лазер на рубине с выходной мощностью 2.5 Вт и длительностью импульса 30нс. В конструкции дальномера широко используются интегральные схемы. Излучатель, приемник и оптические элементы смонтированы в моноблоке, который имеет шкалы точного отчета азимута и угла места цели. Питание дальномера производится то батареи никелево-кадмиевых аккумуляторов напряжением 24в, обеспечивающей 100 измерений дальности без подзарядки. В другом артиллерийской дальномере, также принятом на вооружение армий, имеется устройство для одновременного определения дальности до четырех целей., лежащих на одной прямой, путем последовательного стробирования дистанций 200,600,1000, 2000 и 3000м.

Интересен шведский лазерный дальномер. Он предназначен для использования в системах управления огнем бортовой корабельной и береговой артиллерии. Конструкция дальномера отличается особой прочностью, что позволяет применять его в сложенных условиях. Дальномер можно сопрягать при необходимости с усилителем изображения или телевизионным визиром. Режим работы дальномера предусматривает либо измерения через каждые 2с. в течение 20с. и с паузой между серией измерений в течение 20с. либо через каждые 4с. в течение длительного времени. Цифровые индикаторы дальности работают таким образом, что когда один из индикаторов выдает последнюю измеренную дальность, и в памяти другого хранятся четыре предыдущие измерения дистанции.

Весьма удачным лазерным дальномерам является LP-4. Он имеет в качестве модулятора добротности оптико-механический затвор. Приемная часть дальномера является одновременно визиром оператора. Диаметр входной оптической системы составляет 70мм. Приемником служит портативный фотодиод, чувствительность которого имеет максимальное значение на волне 1,06 мкм. Счетчик снабжен схемой стробирования по дальности, действующей по установке оператора от 200 до 3000м. В схеме оптического визира перед окуляром помещен защитный фильтр для предохранения глаза оператора от воздействия своего лазера при приеме отраженного импульса. Излучатель в приемник смонтированы в одном корпусе. Угол места цели определяется в пределах + 25 градусов. Аккумулятор обеспечивает 150 измерений дальности без подзарядки, его масса всего 1 кг. Дальномер прошел испытания и был закуплен в ряде стран таких как - Канада, Швеция, Дания, Италия, Австралия. Кроме того, министерство обороны Великобритании заключило контракт на поставку английской армии модифицированного дальномера LP-4 массой в 4.4.кг.

Портативные лазерные дальномеры разработаны для пехотных подразделений и передовых артиллерийской наблюдателей. Один из таких дальномеров выполнен в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе, с монокулярным оптическим визиром шестикратного увеличения, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем. В лазере в качестве источника излучения используется аллюминиево-иттриевый гранат, с модулятором добротности на ниобате лития. Это обеспечивает пиковую мощность в 1,5 Мвт. В приемной части используется сдвоенный лавинный фотодетектор с широкополосным малошумящим усилителем, что позволяет детектировать короткие импульсы с малой мощностью, составляющей всего 10 в -9 Вт. Ложные сигналы, отраженные от близлежащих предметов, находящихся в стволе с целью, исключается с помощью схемы стробирования по дальности. Источником питания является малогабаритная аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки. Электронные блоки дальномера выполнены на интегральных и гибридных схемах, что позволило довести массу дальномера вместе с источником питания до 2 кг.

Установка лазерных дальномеров на танки сразу заинтересовала зарубежных разработчиков военного вооружения. Это объясняется тем, что на танке можно ввести дальномер в систему управления огнем танка, чем повысить его боевые качества. Для этого был разработан дальномер AN/VVS-1 для танка М60А. Он не отличался по схеме от лазерного артиллерийского дальномера на рубине, однако помимо выдачи данных о дальности на цифровое табло в счетно-решающее устройство системы управления огнем танка. При этом измерение дальности может производится как наводчиком пушки так и командиром танка. Режим работы дальномера - 15 измерений в минуту в течение одного часа. Зарубежная печать сообщает, что более совершенный дальномер, разработанный позднее, имеет пределы измерения дальности от 200 до 4700м. с точностью + 10 м, и счетно-решающее устройство, связанное с системой управления огнем танка, где совместно с другими данными обрабатывается еще 9 видов данных о боеприпасах. Это, по мнению разработчиков, дает возможность поражать цель с первого выстрела. Система управления огнем танковой пушки имеет в качестве дальномера аналог, рассмотренный ранее, но в нее входят еще семь чувственных датчиков и оптический прицел. Название установки Кобельда. В печати сообщается что она обеспечивает высокую вероятность поражения цели и несмотря на сложность этой установки переключатель механизма баллистики в положение, соответствующее выбранному типу выстрела, а затем нажать кнопку лазерного дальномера. При ведении огня по подвижной цели наводчик дополнительно опускает блокировочный переключатель управления огнем для того, чтобы сигнал от датчика скорости поворота башни при слежении за целью поступал за тахометром в вычислительное устройство, помогая вырабатывать сигнал учреждения. Лазерный дальномер, входящий в систему Кобельда, позволяет измерять дальность одновременно до двух целей, расположенных в створе. Система отличается быстродействием, что позволяет произвести выстрел в кратчайшее время.

Анализ графиков показывает, что использование системы с лазерным дальномером и ЭВМ обеспечивает вероятность поражения цели близкую к расчетной. Графики также показывают, насколько повышается вероятность поражения движущейся цели. Если для неподвижных целей вероятность поражения при использовании лазерной системы по сравнению с вероятностью поражения при использовании системы со стереодальномером не составляет большой разницы на дистанции около 1000м, и ощущается лишь на дальности 1500м, и более, то для движущихся целей выигрыш явный. Видно, что вероятность поражения движущейся цели при использовании лазерной системы по сравнению с вероятностью поражения при использовании системы со стереодальномером уже на дистанции 100м, повышается более чем в 3,5 раза, а на дальности 2000м., где система со стереодальномером становиться практически неэффективной, лазерная система обеспечивает вероятность поражения с первого выстрела около 0,3.

В армиях, помимо артиллерии и танков, лазерные дальномеры используются в системах, где требуется в короткий промежуток времени определить дальность с высокой точностью. Так, в печати сообщалось в разработана автоматическая система сопровождения воздушных целей и измерения дальности до них. Система позволяет производить точное измерение азимута, угла места и дальности. Данные могут быть записаны на магнитную ленту и обработаны на ЭВМ. Система имеет небольшие размеры и массу и размещается на подвижном фургоне. В систему входит лазер, работающий в инфракрасном диапазоне. Приемное устройство с инфракрасной телевизионной камерой, телевизионное контрольное устройство, следящее зеркало с сервопроводом, цифровой индикатор и записывающее устройство. Лазерное устройство на неодимовом стекле работает в режиме модулированной добротности и излучает энергию на волне 1,06 мкм. Мощность излучения составляет 1 Мвт в импульсе при длительности 25нс и частоте следования импульсов 100 Гц. Расходимость лазерного луча 10 мрад. В каналах сопровождения используются различные типы фотодетекторов. В приемном устройстве используется кремниевый светодиод. В канале сопровождения - решетка, состоящая из четырех фотодиодов, с помощью которых вырабатывается сигнал рассогласования при смещении цели в сторону от оси визирования по азимуту и углу места. Сигнал с каждого приемника поступает на видеоусилитель с логарифмической характеристикой и динамическим диапазоном 60 дБ. Минимальной пороговый сигнал при котором система следит за целью составляет 5*10в-8Вт. Зеркало слежения за целью приводится в движение по азимуту и углу места сервомоторами. Система слежения позволяет определять местоположение воздушных целей на удалении до 19 км. при этом точность сопровождения целей, определяемая экспериментально составляет 0,1 мрад. по азимуту и 0,2 мрад по углу места цели. Точность измерения дальности + 15 см.

Лазерные дальномеры на рубине и неодимовом стекле обеспечивают измерение расстояния до неподвижной или медленно перемещающихся объектов, поскольку частота следования импульсов небольшая. Не более одного герца. Если нужно измерять небольшие расстояния, но с большей частотой циклов измерений, то используют фазовые дальномеры с излучателем на полупроводниковых лазерах. В них в качестве источника применяется, как правило, арсенид галлия. Вот характеристика одного из дальномеров: выходная мощность 6,5 Вт в импульсе, длительность которого равна 0,2 мкс, а частота следования импульсов 20 кГц. Расходимость луча лазера составляет 350*160 мрад т.е. напоминает лепесток. При необходимости угловая расходимость луча может быть уменьшена до 2 мрад. Приемное устройство состоит из оптической системы, а фокальной плоскости которой расположена диафрагма, ограничивающая поле зрения приемника в нужном размере. Коллимация выполняется короткофокусной линзой, расположенной за диафрагмой. Рабочая длина волны составляет 0,902 мкм, а дальность действия от 0 до 400м. В печати сообщается, что эти характеристики значительно улучшены в более поздних разработках. Так, например уже разработан лазерный дальномер с дальностью действия 1500м. и точностью измерения расстояния + 30м. Этот дальномер имеет частоту следования 12,5 кГц при длительности импульсов 1 мкс. Другой дальномер, разработанный в США имеет диапазон измерения дальности от 30 до 6400м. Мощность в импульсе 100Вт, а частота следования импульсов составляет 1000 Гц.

Поскольку применяется несколько типов дальномеров, то наметилась тенденция унификации лазерных систем в виде отдельных модулей. Это упрощает их сборку, а также замену отдельных модулей в процессе эксплуатации. По оценкам специалистов, модульная конструкция лазерного дальномера обеспечивает максимум надежности и ремонтопригодности в полевых условиях.

Модуль излучателя состоит из стержня, лампы-накачки, осветителя, высоковольтного трансформатора, зеркал резонатора. модулятора добротности. В качестве источника излучения используется обычно неодимовое стекло или аллюминиево-натриевый гранат, что обеспечивает работу дальномера без системы охлаждения. Все эти элементы головки размещены в жестком цилиндрическом корпусе. Точная механическая обработка посадочных мест на обоих концах цилиндрического корпуса головки позволяет производить их быструю замену и установку без дополнительной регулировки, а это обеспечивает простоту технического обслуживания и ремонта. Для первоначальной юстировки оптической системы используется опорное зеркало, укрепленное на тщательно обработанной поверхности головки, перпендикулярно оси цилиндрического корпуса. Осветитель диффузионного типа представляет собой два входящих один в другой цилиндра между стенками которых находится слой окиси магния. Модулятор добротности рассчитан на непрерывную устойчивую работу или на импульсную с быстрым запусками. основные данные унифицированной головки таковы: длина волны - 1,06 мкм, энергия накачки - 25 Дж, энергия выходного импульса - 0,2 Дж, длительность импульса 25нс, частота следования импульсов 0,33 Гц в течение 12с допускается работа с частотой 1 Гц), угол расходимости 2 мрад. Вследствие высокой чувствительности к внутренним шумам фотодиод, предусилитель и источник питания размещаются в одном корпусе с возможно более плотной компоновкой, а в некоторых моделях все это выполнено в виде единого компактного узла. Это обеспечивает чувствительность порядка 5*10 в -8 Вт.

В усилителе имеется пороговая схема, возбуждающаяся в тот момент, когда импульс достигает половины максимальной амплитуды, что способствует повышению точности дальномера, ибо уменьшает влияние колебаний амплитуды приходящего импульса. Сигналы запуска и остановки генерируются этим же фотоприемником и идут по тому же тракту, что исключает систематические ошибки определения дальности. Оптическая система состоит из афокального телескопа для уменьшения расходимости лазерного луча и фокусирующего объектива для фотоприемника. Фотодиоды имеют диаметр активной площадки 50, 100, и 200 мкм. Значительному уменьшению габаритов способствует то, что приемная и передающая оптические системы совмещены, причем центральная часть используется для формирования излучения передатчика, а периферийная часть - для приема отраженного от цели сигнала.

4. Оптический дальномер

Оптические дальномеры- обобщенное название группы дальномеров с визуальной наводкой на объект (цель), действие которых основано на использовании законов геометрической (лучевой) оптики. Распространены оптические дальномеры: с постоянным углом и выносной базой (например, нитяной дальномер, которым снабжают многие геодезические инструменты - теодолиты, нивелиры и т. д.); с постоянной внутренней базой - монокулярные (например, фотографический дальномер) и бинокулярные (стереоскопические дальномеры).

Оптический дальномер (светодальномер) - прибор для измерения расстояний по времени прохождения оптическим излучением (светом) измеряемого расстояния. Оптический дальномер содержит источник оптического излучения, устройство управления его параметрами, передающую и приёмную системы, фотоприёмное устройство и устройство измерения временных интервалов. Оптический дальномер делятся на импульсные и фазовые в зависимости от методов определения времени прохождения излучением расстояния от объекта и обратно.

Рис. 4 – Современный оптический дальномер

Рис.5 – Оптический дальномер типа «Чайка»

В дальномерах измеряется не сама длина линии, а некоторая другая величина, относительно которой длина линии является функцией.

Как ранее говорилось, в геодезии применяют 3 вида дальномеров:

    оптические (дальномеры геометрического типа),

    электрооптические (светодальномеры),

    радиотехнические (радиодальномеры).

4.1. Физические основы измерений и принцип действия

Рис. 6 Геометрическая схема оптических дальномеров

Пусть требуется найти расстояние АВ. Поместим в точку А оптический дальномер, а в точку В перпендикулярно линии АВ - рейку.

Обозначим: l - отрезок рейки GM,
φ - угол, под которым этот отрезок виден из точки А.

Из треугольника АGВ имеем:

D=1/2*ctg(φ/2) (4.1.1)

D = l * сtg(φ) (4.1.2)

Обычно угол φ небольшой (до 1 o) , и, применяя разложение функции Ctgφ в ряд, можно привести формулу (4.1.1) к виду (4.1.2). В правой части этих формул два аргумента, относительно которых расстояние D является функцией. Если один из аргументов имеет постоянное значение, то для нахождения расстояния D достаточно измерить только одну величину. В зависимости от того, какая величина - φ или l, - принята постоянной, различают дальномеры с постоянным углом и дальномеры с постоянным базисом.

В дальномере с постоянным углом измеряют отрезок l, а угол φ - постоянный; он называется диастимометрическим углом.

В дальномерах с постоянным базисом измеряют угол φ, который называется параллактическим углом; отрезок l имеет постоянную известную длину и называется базисом.

4.1.2 Нитяной дальномер с постоянным углом

В сетке нитей зрительных труб, как правило, имеются две дополнительные горизонтальные нити, расположенные по обе стороны от центра сетки нитей на равных расстояниях от него; это - дальномерные нити (рис.7).

Нарисуем ход лучей, проходящих через дальномерные нити в трубе Кеплера с внешней фокусировкой. Прибор установлен над точкой А; в точке В находится рейка, установленная перпендикулярно визирной линии трубы. Требуется найти расстояние между точками А и В.

Рис. 7 - Дальномерные нити

Построим ход лучей из точек m и g дальномерных нитей. Лучи из точек m и g, идущие параллельно оптической оси, после преломления на линзе объектива пересекут эту ось в точке переднего фокуса F и попадут в точки М и G рейки. Расстояние от точки A до точки B будет равно:

D = l/2 * Ctg(φ/2) + fоб + d (4.1.2.1)

где d - расстояние от центра объектива до оси вращения теодолита;
f об -фокусное расстояние объектива;
l - длина отрезка MG на рейке.

Обозначим (f об + d) через c, а величину 1/2*Ctg φ/2 - через С, тогда

D = C * l + c. (4.1.2.2)

Постоянная С называется коэффицентом дальномера. Из Dm"OF имеем:

Ctg φ/2 = ОF/m"O; m"O= p/2 (4.1.2.3)

Ctg φ/2 = (fоб*2)/p, (4.1.2.4)

где p - расстояние между дальномерными нитями. Далее пишем:

С = f об /p. (4.1.2.5)

Коэффициент дальномера равен отношению фокусного расстояния объектива к расстоянию между дальномерными нитями. Обычно коэффицент С принимают равным 100, тогда Ctg φ/2 = 200 и φ = 34.38". При С = 100 и fоб = 200 мм расстояние между нитями равно 2 мм.

4.1.3 Измерение нитяным дальномером наклонного расстояния

Пусть визирная линия трубы JK при измерении расстояния АВ имеет угол наклона ν, и по рейке измерен отрезок l (рис. 8). Если бы рейка была установлена перпендикулярно визирной линии трубы, то наклонное расстояние было бы равно:

D = l 0 * C + c (4.1.3.1)

l 0 = l*Cos ν (4.1.3.2)

D = C*l*Cosν + c. (4.1.3.3)

Горизонтальное проложение линии S определим из Δ JKE:

S = D*Cosν (4.1.3.4)

S= C*l*Cos2ν + c*Cosν. (4.1.3.5)

рис. 8 - Измерение нитяным дальномером наклонного расстояния

Для удобства вычислений принимаем второе слагаемое равным с*Cos2ν ; поскольку с величина небольшая (около 30 см), то такая замена не внесет заметной ошибки в вычисления. Tогда

S = (C * l + c) * Cos 2 ν (4.1.3.6)

S = D"* Cos2ν (4.1.3.7)

Oбычно величину (C*l + c) назыывают дальномерным расстоянием. Обозначим разность (D" - S) через ΔD и назовем ее поправкой за приведение к горизонту, тогда

S = D" – ΔD (4.1.3.8)

ΔD = D" * Sin 2 ν (4.1.3.9)

Угол ν измеряют вертикальным кругом теодолита; причем при поправка ΔD не учитывается. Точность измерения расстояний нитяным дальномером обычно оценивается относительной ошибкой от 1/100 до 1/300.

Кроме обычного нитяного дальномера существуют оптические дальномеры двойного изображения.

4.2 Особенности конструкции и принцип работы

В импульсном светодальномере источником излучения чаще всего является лазер, излучение которого формируется в виде коротких импульсов. Для измерения медленно меняющихся расстоянии используют одиночные импульсы, при быстро изменяющихся расстояниях применяется импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50-100 Гц, полупроводниковые - до 104-105 Гц. Формирование коротких импульсов излучения в твердотельных лазерах осуществляется механическими, электрооптическими или акустооптичекими затворами или их комбинациями. Инжекционные лазеры управляются током инжекции.

В фазовых светодальномерах в качестве источников света применяются накальные или газосветные лампы, светодиоды и почти все виды лазеров. Оптический дальномер со светодиодами обеспечивают дальность действия до 2-5 км, с газовыми лазерами при работе с оптическими отражателями на объекте - до 100 км, а при диффузном отражении от объектов - до 0,8 км; аналогично, Оптический дальномер с полупроводниковыми лазерами обеспечивает дальность действия 15 и 0,3 км. В фазовых Светодальномерное излучение модулируется интерференционными, акустооптическим и злектрооптическими модуляторами. В СВЧ фазовых оптических дальномерах применяются электрооптические модуляторы на резонаторных и волноводных СВЧ структурах.

В импульсных светодальномерах обычно в качестве фотоприёмного устройства применяются фотодиоды, в фазовых светодальномерах фотоприём осуществляется на фотоэлектронные умножители. Чувствительность фотоприёмного тракта оптического дальномера может быть увеличена на несколько порядков применением оптического гетеродинирования. Дальность действия такого Оптического дальномера ограничивается длиной когерентности) передающего лазера, при этом возможна регистрация перемещений и колебаний объектов до 0,2 км.

Измерение временных интервалов чаще всего осуществляется счётно-импульсным методом.

5. Вывод

Дальномер – является лучшим прибором для измерения расстояния на длинные дистанции. Сейчас лазерные дальномеры используются и в наземной военной технике и в авиации и на флоте. Ряд дальномеров принят на вооружение во многих армиях мира. Так же дальномер стал незаменимой частью охоты, что делает его уникальным и очень полезным.

6. Библиографический список

1. Герасимов Ф.Я., Говорухин А.М. Краткий топографо-геодезический словарь-справочник,1968;М Недра

Элементарный курс оптики и дальномеров, Воениздат, 1938, 136 с.

Военные оптико-механические приборы, Оборонпром, 1940, 263 с.

4. Интернет магазин оптики. Принципы работы лазерного дальномера. URL: http://www.optics4you.ru/article5.html

Электронная версия учебного пособия в форме гипертекста
по дисциплине "Геодезия". URL: http://cheapset.od.ua/4_3_2.htmlдальномераРеферат >> Геология

K и f + d = c , получаем D = K n + c , где K - коэффициент дальномера и c - постоянная дальномера . Рис. 8.4. Нитяный дальномер : а) – сетка нитей; б) – схема определения... нивелиров. Устройство технических нивелиров. В зависимости от устройств , применяемых...

Создание лазерных импульсных дальномеров явилось одним из первых применений лазеров в военной технике. Измерение дальности до цели является типовой задачей артиллерийской стрельбы, которая уже давно решалась оптическими средствами, но с недостаточной точностью, требовала громоздких приборов и высокой квалификации и тренированности персонала. Радиолокация позволила измерять дальность до целей путём измерения времени задержки отражённого от цели радиоимпульса. Принцип действия квантовых дальномеров основан на измерении времени прохождения светового сигнала до цели и обратно и заключается в следующем: мощный импульс излучения малой длительности, генерируемый оптическим квантовым генератором (ОКГ) дальномера, формируется оптической системой и направляется к цели, дальность до которой необходимо измерить. Отраженный от цели импульс излучения, пройдя оптическую систему, попадает на фотоприемник дальномера. Момент излучения зондирующего и моменты поступления отраженных сигналов регистрируются блоком запуска (БЗ) и фотоприемным устройством (ФПУ), которые вырабатывают электрические сигналы для запуска и остановки измерителя временных интервалов (ИВИ). ИВИ измеряет временной интервал между передними фронтами излученного и отраженного импульсов. Дальность до цели пропорциональна этому интервалу и определяется по формуле, где - дальность до цели, м; - скорость света в атмосфере, м/с; - измеренный временной интервал, с.

Результат измерения в метрах высвечивается на цифровом индикаторе в поле зрения левого окуляра дальномера. Для создания оптического аналога радиолокатора не хватало только мощного импульсного источника света с хорошей направленностью луча. Твердотельный лазер с модулированной добротностью явился прекрасным решением этой проблемы. Первые советские лазерные дальномеры были разработаны в середине 60-х годов предприятиями оборонной промышленности, имевшими огромный опыт в создании оптических приборов. НИИ «Полюс» в это время ещё только формировался. Первой работой института в этом направлении была разработка рубинового элемента 5,5 х 75 для лазерного дальномера, создаваемого ЦНИИАГ. Разработка была успешно завершена в 1970 г созданием такого элемента с приёмкой заказчика. Отдел института, возглавляемый В.М. Кривцуном, в эти же годы разрабатывал рубиновые лазеры для космических траекторных измерений и оптической локации Луны. Был накоплен большой задел по созданию твердотельных лазеров полевого применения и их стыковке с аппаратурой заказчика. С использованием нашего лазера НИИ Космического приборостроения (Директор - Л.И. Гусев, Главный конструктор комплекса - В.Д. Шаргородский) провёл в 1972 - 73 гг успешную оптическую локацию Луноходов, доставленных советскими космическими кораблями на поверхность Луны. При этом определялось и местонахождение Луноходов на Луне методом сканирования лазерного луча. В 70-х годах эти работы были продолжены разработкой локационного лазера на гранате с неодимом («Кандела», Главный конструктор Зверев Г.М., ведущие исполнители М.Б. Житкова, В.В. Шульженко, В.П. Мызников). Ранее намеченный для использования в авиации, этот лазер был успешно применен для оснащения и многолетней эксплуатации широкой сети лазерных станций траекторных измерений спутников на Майданаке на Памире, на Дальнем Востоке, в Крыму и в Казахстане. В настоящее время на этих станциях работает уже 3-е поколение лазеров, разработанных в НИИ «Полюс» (И.В.Васильев, С.В.Зиновьев и др.). Опыт разработки лазеров военного применения дал возможность приступить к разработке непосредственно лазерных дальномеров в «Полюсе». Инициатива по разработке дальномеров в институте, проявленная Г.М. Зверевым, в 1970 г. возглавившим комплексное отделение института по разработке активных и нелинейных элементов, твердотельных лазеров и приборов на них, была активно поддержана директором М.Ф.Стельмахом и руководством отрасли.

В начале 70-х годов институт единственный в стране владел технологией выращивания монокристаллов и электрооптических затворов, что дало возможность создавать приборы существенно меньшей массы и габаритов. Так, типовая энергия накачки рубинового лазера для дальномера составляла 200 Дж, а для гранатового лазера только 10 Дж. В несколько раз сокращалась и длительность импульса лазера, что повышало точность измерений. Первая разработка прибора началась в конце 60-х годов под руководством В.М. Кривцуна. В качестве компоновочной идеи им была выбрано схема с одним объективом, с использованием электрооптического элемента в качестве коммутатора входного и выходного каналов. Эта схема была подобна схеме радиолокатора с антенным переключателем. Был выбран лазер на кристалле АИГ:Nd, позволявший получать достаточную выходную энергию ИК излучения (20 мДж). Завершить разработку прибора В.М.Кривцуну не удалось, он тяжело заболел и в 1971 г. скончался. Завершать разработку пришлось А.Г. Ершову, ранее разрабатывавшему перестраиваемые лазеры для научных исследований. Оптическую схему пришлось сменить на классическую с раздельными объективами передатчика и приёмника, так как в совмещённой схеме не удалось справиться с засветкой фотоприёмника мощным импульсом передатчика. Успешные натурные испытания первого НИР-овского образца прибора «Контраст- 2» прошли в июне 1971 г. Заказчиком ОКР первого в стране лазерного дальномера выступило Военно-топографическое управление. Разработка была завершена в очень короткий срок. Уже в 1974 году квантовый топографический дальномер КТД-1(рис. 1.2.1) был принят на снабжение и передан в серийное производство на завод «Тантал» в Саратове.


Рис. 1.2.1

При этой разработке полностью проявился талант Главного конструктора А.Г. Ершова, сумевшего правильно выбрать основные технические решения прибора, организовать разработку смежными подразделениями его блоков и узлов, новых функциональных элементов. Прибор обладал дальностью действия до 20 км с погрешностью менее 1,7 м. Дальномер КТД-1 выпускался серийно много лет в Саратове, а так же на заводе ВТУ в Москве. За период 1974 - 1980гг. в войска поступило более 1000 таких приборов. Они успешно использовались при решении многих задач военной и гражданской топографии. Для лазерных дальномеров в институте бы разработан целый рях новых элементов. В материаловедческих подразделениях под руководством В.М. Гармаша и В.П. Клюева были созданы высококачественные активные элементы из алюмо-иттриевого граната и алюмината иттрия с неодимом. Н.Б. Ангертом, В.А. Пашковым и А.М. Онищенко были созданы не имеющие аналогов в мире электрооптические затворы из ниобата лития. В подразделении П.А. Цетлин были созданы пассивные затворы на красителях. На этой элементной базе Е.М. Швом и Н.С. Устименко разработали малогабаритные лазерные излучатели ИЛТИ-201 и ИЗ-60 для малогабаритных дальномеров. В это же время были разработаны перспективные фотоприемные устройства на базе германиевого лавинного фотодиода в отделе А.В. Иевского В.А. Афанасьевым и М.М. Земляновым. Первый малогабаритный (в виде бинокля) лазерный дальномер ЛДИ-3(рис. 1.2.2) был испытан на полигоне в 1977 г., а в 1980г. были успешно проведены Государственные испытания.

Рис. 1.2.2

Прибор был освоен серийно на Ульяновском радиоламповом заводе. В 1982 году проводились Государственные сравнительные испытания прибора ЛДИ-3 и прибора 1Д13, разработанного Казанским оптико-механическим заводам по заказу МО. По ряду причин комиссия пыталась отдать предпочтение прибору КОМЗ, однако безупречная работа дальномера НИИ «Полюс» во время испытаний привела к тому, что были рекомендованы к принятию на снабжение и серийному производству оба прибора: 1Д13 для сухопутных войск и ЛДИ-3 для ВМФ. Всего за 10 лет было выпущено в производстве несколько тысяч приборов ЛДИ-3 и его дальнейшей модификации ЛДИ-3-1. В конце 80-х годов А.Г.Ершовым была разработана последняя версия дальномера-бинокля ЛДИ-3-1М с массой менее 1,3 кг. Она оказалась последней работой талантливого Главного конструктора, рано ушедшего из жизни в 1989г.

Линия разработок для ВТУ, начатая КТД-1, была продолжена новыми приборами. В результате творческого сотрудничества НИИ «Полюс» и 29 НИИ ВТС были созданы дальномер - гиротеодолит ДГТ-1 («Капитан»), измеряющий расстояния до предметов на местности с погрешностью менее 1м и угловые координаты - точнее 20 угл.сек. В 1986 г. разработан и принят на снабжение лазерный дальномер КТД-2-2 - насадка на теодолит (рис. 1.2.3).


Рис. 1.2.3

В 1970-х годах на вооружение поступили принципиально новые квантовые дальномеры (ДАК-1, ДАК-2, 1Д5 и др.). Они позволяли в короткое время с высокой точностью определять координаты объектов (целей) и разрывов снарядов. Чтобы убедиться в превосходстве их характеристик, достаточно сравнить срединные ошибки измерения дальности: ДС-1 -- 1,5 проц. (при дальности наблюдения до 3 км), ДАК -- 10 м (независимо от дальности).Применение дальномеров позволило значительно сократить время обнаружения целей, повысить вероятность их вскрытия днём и ночью и тем самым повысить эффективность огня артиллерии. Артиллерийские квантовые дальномеры являются одним из основных средств ведения разведки в артиллерийских подразделениях. Кроме основного назначения - измерения дальности, квантовые дальномеры позволяют решать задачи ведения визуальной разведки местности и противника, корректирования стрельбы, измерения горизонтальных и вертикальных углов, топогеодезической привязки элементов боевых порядков артиллерийских подразделений. Кроме того, лазерный дальномер-целеуказатель 1Д15 позволяет осуществлять подсветку целей лазерным излучением с полуактивным наведением при выполнении огневых задач высокоточными боеприпасами с головками самонаведения.В настоящее время на вооружении находятся следующие виды квантовых дальномеров: дальномер командирских и разведывательных машин ДКМР-1 (индекс 1Д8), дальномер артиллерийский квантовый ДАК-2 (1Д11) и его модификации ДАК-2М-1 (1Д11М-1) и ДАК-2М-2 (1Д11М-2), лазерный прибор разведки ЛПР-1 (1Д13), дальномер-целеуказатель 1Д15.