Сколько еврокомиссаров в европейской комиссии. Европейская Комиссия. Европейская Комиссия - главный исполнительный орган Европейского Союза. Деятельность Европейской комиссии

Коэффициент корреляции – это величина, которая может варьировать в пределах от +1 до –1. В случае полной положительной корреляции этот коэффициент равен плюс 1 (говорят о том, что при увеличении значения одной переменной увеличивается значение другой переменной), а при полной отрицательной – минус 1 (свидетельствуют об обратной связи, т.е. При увеличении значений одной переменной, значения другой уменьшаются).

Пр1.:

График зависимости застенчивости и дипресивности. Как видим, точки (испытуемые) расположены не хаотично, а выстраиваются вокруг одной линии, причём, глядя на эту линию можно сказать, что чем выше у человека выражена застенчивость, тем больше депрессивность, т. е. эти явления взаимосвязаны.

Пр2.: График для Застенчивости и Общительности. Мы видим, что с увеличением застенчивости общительность уменьшается. Их коэффициент корреляции -0,43. Таким образом, коэффициент корреляции больший от 0 до 1 говорит о прямопропорциональной связи (чем больше… тем больше…), а коэффициент от -1 до 0 о обратнопропорциональной (чем больше… тем меньше…)

В случае если коэффициент корреляции равен 0, обе переменные полностью независимы друг от друга.

Корреляционная связь - это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных. Примерами корреляционной зависимости могут быть зависимости между размерами активов банка и суммой прибыли банка, ростом производительности труда и стажем работы сотрудников.

Используется две системы классификации корреляционных связей по их силе: общая и частная.

Общая классификация корреляционных связей:1) сильная, или тесная при коэффициенте корреляции r>0,70;2) средняя при 0,500,70, а не просто корреляция высокого уровня значимости.

В следующей таблице написаны названия коэффициентов корреляции для различных типов шкал.

Дихотомическая шкала (1/0) Ранговая (порядковая) шкала
Дихотомическая шкала (1/0) Коэфициент ассоциации Пирсона, коэффициент четырехклеточной сопряженности Пирсона. Бисериальная корреляция
Ранговая (порядковая) шкала Рангово-бисериальная корреляция. Ранговый коэффициент корреляции Спирмена или Кендалла.
Интервальная и абсолютная шкала Бисериальная корреляция Значения интервальной шкалы переводятся в ранги и используется ранговый коэффициент Коэффициент корреляции Пирсона (коэффициент линейной корреляции)

При r =0 линейная корреляционная связь отсутствует. При этом групповые средние переменных совпадают с их общи­ми средними, а линии регрессии параллельны осям координат.

Равенство r =0 говорит лишь об отсутствии линейной корреляционной зависимости (некоррелирован­ности переменных), но не вообще об отсутствии корреляционной, а тем более, статистической зависимости.

Иногда вывод об отсутствии корреляции важнее наличия сильной корреляции. Нулевая корреляция двух переменных может свидетельствовать о том, что никакого влияния одной переменной на другую не существует, при условии, что мы доверяем результатам измерений.

В SPSS: 11.3.2 Коэффициенты корреляции

До сих пор мы выясняли лишь сам факт существования статистической зависимости между двумя признаками. Далее мы попробуем выяснить, какие заключения можно сделать о силе или слабости этой зависимости, а также о ее виде и направленности. Критерии количественной оценки зависимости между переменными называются коэффициентами корреляции или мерами связанности. Две переменные коррелируют между собой положительно, если между ними существует прямое, однонаправленное соотношение. При однонаправленном соотношении малые значения одной переменной соответствуют малым значениям другой переменной, большие значения - большим. Две переменные коррелируют между собой отрицательно, если между ними существует обратное, разнонаправленное соотношение. При разнонаправленном соотношении малые значения одной переменной соответствуют большим значениям другой переменной и наоборот. Значения коэффициентов корреляции всегда лежат в диапазоне от -1 до +1.

В качестве коэффициента корреляции между переменными, принадлежащими порядковой шкале применяется коэффициент Спирмена, а для переменных, принадлежащих к интервальной шкале - коэффициент корреляции Пирсона (момент произведений). При этом следует учесть, что каждую дихотомическую переменную, то есть переменную, принадлежащую к номинальной шкале и имеющую две категории, можно рассматривать как порядковую.

Для начала мы проверим существует ли корреляция между переменными sex и psyche из файла studium.sav. При этом мы учтем, что дихотомическую переменную sex можно считать порядковой. Выполните следующие действия:

· Выберите в меню команды Analyze (Анализ) Descriptive Statistics (Дескриптивные статистики) Crosstabs... (Таблицы сопряженности)

· Перенесите переменную sex в список строк, а переменную psyche - в список столбцов.

· Щелкните на кнопке Statistics... (Статистика). В диалоге Crosstabs: Statistics установите флажок Correlations (Корреляции). Подтвердите выбор кнопкой Continue.

· В диалоге Crosstabs откажитесь от вывода таблиц, установив флажок Supress tables (Подавлять таблицы). Щелкните на кнопке ОК.

Будут вычислены коэффициенты корреляции Спирмена и Пирсона, а также проведена проверка их значимости:

/ СПСС 10

Задание № 10 Корреляционный анализ

Понятие корреляции

Корреляция или коэффициент корреляции – это статистический показательвероятностной связи между двумя переменными, измеренными по количественным шкалам. В отличие от функциональной связи, при которой каждому значению одной переменной соответствуетстрого определенное значение другой переменной,вероятностная связь характеризуется тем, что каждому значению одной переменной соответствуетмножество значений другой переменной, Примером вероятностной связи является связь между ростом и весом людей. Ясно, что один и тот же рост может быть у людей разного веса и наоборот.

Корреляция представляет собой величину, заключенную в пределах от -1 до + 1, и обозначается буквой r. Причем, если значение находится ближе к 1, то это означает наличие сильной связи, а если ближе к 0, то слабой. Значение корреляции менее 0,2 рассматривается как слабая корреляция, свыше 0,5 – высокая. Если коэффициент корреляции отрицательный, это означает наличие обратной связи: чем выше значение одной переменной, тем ниже значение другой.

В зависимости от принимаемых значений коэффициента rможно выделить различные виды корреляции:

Строгая положительная корреляция определяется значениемr=1. Термин «строгая» означает, что значение одной переменной однозначно определяются значениями другой переменной, а термин «положительная» - что с возрастанием значений одной переменной значения другой переменной также возрастают.

Строгая корреляция является математической абстракцией и практически не встречается в реальных исследованиях.

Положительная корреляция соответствует значениям 0

Отсутствие корреляции определяется значениемr=0. Нулевой коэффициент корреляции говорит о том, что значения переменных никак не связаны между собой.

Отсутствие корреляции H o : 0 r xy =0 формулируется как отражениенулевой гипотезы в корреляционном анализе.

Отрицательная корреляция : -1

Строгая отрицательная корреляция определяется значениемr= -1. Она также, как и строгая положительная корреляция, является абстракцией и не находит выражение в практических исследованиях.

Таблица 1

Виды корреляции и их определения

Метод вычисления коэффициента корреляции зависит от вида шкалы, по которой измерены значения переменной.

Коэффициент корреляции r Пирсона является основным и может использоваться для переменных с номинальной и частично упорядоченными, интервальными шкалами, распределение значений по которым соответствует нормальному (корреляция моментов произведения). Коэффициент корреляции Пирсона дает достаточно точные результаты и в случаях анормальных распределений.

Для распределений, не являющихся нормальными, предпочтительнее пользоваться коэффициентами ранговой корреляции Спирмена и Кендалла. Ранговыми они являются потому, что программа предварительно ранжирует коррелируемые переменные.

Корреляцию rСпирмена программаSPSSвычисляет следующим образом: сначала переменные переводятся в ранги, а затем к рангам применяется формулаrПирсона.

В основе корреляции, предложенной М. Кендаллом, лежит идея о том, что о направлении связи можно судить, попарно сравнивая между собой испытуемых. Если у пары испытываемых изменение по Х совпадают по направлению с изменением по Yсовпадает, то это свидетельствует о положительной связи. Если не совпадает – то об отрицательной связи. Данный коэффициент применяется преимущественно психологами, работающими с малыми выборками. Так как социологи работают с большими массивами данных, то перебор пар, выявление разности относительных частот и инверсий всех пар испытуемых в выборке затруднителен. Наиболее распространенным является коэф. Пирсона.

Поскольку коэффициент корреляции rПирсона является основным и может использоваться (с некоторой погрешностью в зависимости от типа шкалы и уровня анормальности в распределении) для всех переменных, измеренных по количественным шкалам, рассмотрим примеры его использования и сравним полученные результаты с результатами измерений по другим коэффициентам корреляции.

Формула вычисления коэффициента r - Пирсона:

r xy = ∑ (Xi-Xср)∙(Yi-Yср) / (N-1)∙σ x ∙σ y ∙

Где: Xi, Yi- Значения двух переменных;

Xср, Yср- средние значения двух переменных;

σ x , σ y – стандартные отклонения,

N- количество наблюдений.

Парные корреляции

Например, мы хотели бы выяснить, как соотносятся ответы между различными видами традиционных ценностей в представлениях студентов об идеальном месте работы (переменные: а9.1, а9.3, а9.5, а9.7), а затем о соотношении либеральных ценностях (а9.2, а9.4. а9.6, а9.8) . Данные переменные измерены по 5 – членным упорядоченным шкалам.

Используем процедуру: «Анализ», «Корреляции»,«Парные». По умолчанию коэф. Пирсона установлен в диалоговом окне. Используем коэф. Пирсона

В окно отбора переносятся тестируемые переменные: а9.1, а9.3, а9.5, а9.7

Путем нажатия ОК получаем расчет:

Корреляции

а9.1.т. Насколько важно иметь достаточно времени для семьи и личной жизни?

Корреляция Пирсона

Знч.(2-сторон)

а9.3.т. Насколько важно не бояться потерять свою работу?

Корреляция Пирсона

Знч.(2-сторон)

а9.5.т. Насколько важно иметь такого начальника, который будет советоваться с Вами, принимая то или иное решение?

Корреляция Пирсона

Знч.(2-сторон)

а9.7.т. Насколько важно работать в слаженном коллективе, ощущать себя его частью?

Корреляция Пирсона

Знч.(2-сторон)

** Корреляция значима на уровне 0.01 (2-сторон.).

Таблица количественных значений построенной корреляционной матрицы

Частные корреляции:

Для начала построим парную корреляцию между указанными двумя переменными:

Корреляции

с8. Ощущают близость с теми, кто живет рядом с вами, соседями

Корреляция Пирсона

Знч.(2-сторон)

с12. Ощущают близость со своей семьей

Корреляция Пирсона

Знч.(2-сторон)

**. Корреляция значима на уровне 0.01 (2-сторон.).

Затем используем процедуру построения частной корреляции: «Анализ», «Корреляции»,«Частные».

Предположим, что ценность «Важно самостоятельно определять и изменять порядок своей работы» во взаимосвязи с указанными переменными окажется тем решающим фактором, под влияние которого ранее выявленная связь исчезнет, либо окажется малозначимой.

Корреляции

Исключенные переменные

с8. Ощущают близость с теми, кто живет рядом с вами, соседями

с12. Ощущают близость со своей семьей

с16. Ощущают близость с людьми, котрые имеют тот же достаток, что и вы

с8. Ощущают близость с теми, кто живет рядом с вами, соседями

Корреляция

Значимость (2-сторон.)

с12. Ощущают близость со своей семьей

Корреляция

Значимость (2-сторон.)

Как видно из таблицы под влиянием контрольной переменной связь несколько снизилась: с 0, 120 до 0, 102. Однако, это незначительно снижение не позволяет утверждать, что ране выявленная связь является отражением ложной корреляции, т.к. она остается достаточно высокой и позволяет с нулевой погрешностью опровергать нулевую гипотезу.

Коэффициент корреляции

Наиболее точный способ определения тесноты и характера корреляционной связи - нахождение коэффициента корреляции. Коэффициент корреляции есть число определяемое по формуле:


где r ху - коэффициент корреляции;

x i -значения первого признака;

у i -значения второго признака;

Средняя арифметическая значений первого признака

Средняя арифметическая значений второго признака

Для пользования формулой (32) построим таблицу, которая обеспечит необходимую последовательность в подготовке чисел для нахождения числителя и знаменателя коэффициента корреляции.

Как видно из формулы (32), последовательность действий такая: находим средние арифметические обоих признаков х и у, находим разность между значениями признака и его средней (х і - ) и у і - ), затем находим их произведение (х і - ) (у і - ) – суммa пocлeдних дает числитель коэффициента корреляции. Для нахождения его знаменателя следует разности (x i - )и (у і - ) возвести в квадрат, найти их суммы и извлечь корень квадратный из их произведения.

Так для примера 31 нахождение коэффициента корреляции в соответствии с формулой (32) можно представить следующим образом (табл. 50).

Полученное число коэффициента корреляции дает возможность установить наличие, тесноту и характер связи.

1. Если коэффициент корреляции равен нулю, связь между признаками отсутствует.

2. Если коэффициент корреляции равен единице, связь между признаками столь велика, что превращается в функциональную.

3. Абсолютная величина коэффициента корреляции не выходит за пределы интервала от нуля до единицы:

Это дает возможность ориентироваться на тесноту связи: чем величина коэффициента ближе к нулю, тем связь слабее, а чем ближе к единице, тем связь теснее.

4. Знак коэффициента корреляции «плюс» означает прямую корреляцию, знак «минус»-обратную.

Таблица50

х і у і (х і - ) (у і - ) (х і - )(у і - ) (х і - )2 (у і - )2
14,00 12,10 -1,70 -2,30 +3,91 2,89 5,29
14,20 13,80 -1,50 -0,60 +0,90 2,25 0,36
14,90 14,20 -0,80 -0,20 +0,16 0,64 0,04
15,40 13,00 -0,30 -1,40 +0,42 0,09 1,96
16,00 14,60 +0,30 +0,20 +0,06 0,09 0,04
17,20 15,90 +1,50 +2,25 2,25
18,10 17,40 +2,40 +2,00 +4,80 5,76 4,00
109,80 101,00 12,50 13,97 13,94


Таким образом, вычисленный в примере 31 коэффициент корреляции r xy = +0,9. позволяет сделать такие выводы: существует корреляционная связь между величиной мышечной силы правой и левой кистей у исследуемых школьников (коэффициент r xy =+0,9 отличен от нуля), связь очень тесная (коэффициент r xy =+0,9 близок к единице), корреляция прямая (коэффициент r xy = +0,9 положителен), т. е. с увеличением мышечной силы одной из кистей увеличивается сила другой кисти.

При вычислении коэффициента корреляции и пользовании его свойствами следует учесть, что выводы дают корректные результаты в том случае, когда признаки распределены нормально и когда рассматривается взаимосвязь между большим количеством значений обоих признаков.

В рассмотренном примере 31 анализированы только 7 значений обоих признаков, что, конечно, недостаточно для подобных исследований. Напоминаем здесь еще раз, что примеры, в данной книге вообще и в этой главе в частности, носят характер иллюстрации методов, а не подробного изложения каких-либо научных экспериментов. Вследствие этого рассмотрено небольшое число значений признаков, измерения округлены - все это делается для того, чтобы громоздкими вычислениями не затемнять идею метода.

Особое внимание следует обратить на существо рассматриваемой взаимосвязи. Коэффициент корреляции не может привести к верным результатам исследования, если анализ взаимосвязи между признаками проводится формально. Возвратимся еще раз к примеру 31. Оба рассмотренных признака представляли собой значения мышечной силы правой и левой кистей. Представим себе, что под признаком x i в примере 31 (14,0; 14,2; 14,9... ...18,1) мы понимает длину случайно пойманных рыб в сантиметрах, а под признаком у і (12,1; 13,8; 14,2... ...17,4) -вес приборов в лаборатории в килограммах. Формально воспользовавшись аппаратом вычислений для нахождения коэффициента корреляции и получив в этом случае также r xy =+0>9, мы должны были заключить, что между длиной рыб и весом приборов существует тесная связь прямого характера. Бессмысленность такого вывода очевидна.

Чтобы избежать формального подхода к пользованию коэффициентом корреляции, следует любым другим методом - математическим, логическим, экспериментальным, теоретическим - выявить возможность существования корреляционной связи между признаками, то есть обнаружить органическое единство признаков. Только после этого можно приступать к пользованию корреляционным анализом и устанавливать величину и характер взаимосвязи.

В математической статистике существует еще понятие множественной корреляции - взаимосвязи между тремя и более признаками. В этих случаях пользуются коэффициентом множественной корреляции, состоящим из парных коэффициентов корреляции, описанных выше.

Например, коэффициент корреляции трех признаков-х і , у і , z і - есть:

где R xyz -коэффициент множественной корреляции, выражающий, как признак х i зависит от признаков у і и z i ;

r xy -коэффициент корреляции между признаками x i и y i ;

r xz -коэффициент корреляции между признаками Xi и Zi;

r yz - коэффициент корреляции между признаками y i , z i

Корреляционный анализ это:

Корреляционный анализ

Корреля́ция - статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи - например, для независимых случайных величин). Отрицательная корреляция - корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция - корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция - статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса - со сдвигом по времени.

Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом .

Коэффициент корреляции

Коэффицие́нт корреля́ции или парный коэффицие́нт корреля́ции в теории вероятностей и статистике - это показатель характера изменения двух случайных величин. Коэффициент корреляции обозначается латинской буквой R и может принимать значения между -1 и +1. Если значение по модулю находится ближе к 1, то это означает наличие сильной связи (при коэффициенте корреляции равном единице говорят о функциональной связи), а если ближе к 0, то слабой.

Коэффициент корреляции Пирсона

Для метрических величин применяется коэффициент корреляции Пирсона, точная формула которого была введена Фрэнсисом Гальтоном:

Пусть X ,Y - две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:

,

где cov обозначает ковариацию, а D - дисперсию, или, что то же самое,

,

где символ обозначает математическое ожидание.

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».

Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или τ (тау) Кендала. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, кода связь между ними линейна (однонаправлена).

Коэффициент корреляции Кенделла

Используется для измерения взаимной неупорядоченности.

Коэффициент корреляции Спирмена

Свойства коэффициента корреляции

  • Неравенство Коши - Буняковского:
если принять в качестве скалярного произведения двух случайных величин ковариацию , то норма случайной величины будет равна , и следствием неравенства Коши - Буняковского будет: . , где . Более того в этом случае знаки и k совпадают: .

Корреляционный анализ

Корреляционный анализ - метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции ) между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа - обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют . В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б: если обе переменные растут то корреляция положительная , если одна переменная растёт, а вторая уменьшается, корреляция отрицательная .

Корреляция отражает лишь линейную зависимость величин, но не отражает их функциональной связности. Например, если вычислить коэффициент корреляции между величинами A = s i n (x ) и B = c o s (x ), то он будет близок к нулю, т. е. зависимость между величинами отсутствует. Между тем, величины A и B очевидно связаны функционально по закону s i n 2(x ) + c o s 2(x ) = 1.

Ограничения корреляционного анализа



Графики распределений пар (x,y) с соответствующими коэффициентами корреляций x и y для каждого из них. Обратите внимание, что коэффициент корреляции отражает линейную зависимость (верхняя строка), но не описывает кривую зависимости (средняя строка), и совсем не подходит для описания сложных, нелинейных зависимостей (нижняя строка).
  1. Применение возможно в случае наличия достаточного количества случаев для изучения: для конкретного вида коэффициента корреляции составляет от 25 до 100 пар наблюдений.
  2. Второе ограничение вытекает из гипотезы корреляционного анализа, в которую заложена линейная зависимость переменных . Во многих случаях, когда достоверно известно, что зависимость существует, корреляционный анализ может не дать результатов просто ввиду того, что зависимость нелинейна (выражена, например, в виде параболы).
  3. Сам по себе факт корреляционной зависимости не даёт основания утверждать, какая из переменных предшествует или является причиной изменений, или что переменные вообще причинно связаны между собой, например, ввиду действия третьего фактора.

Область применения

Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Ложная корреляция

Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.

В современной количественной методологии социальных наук, фактически, произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому, когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевается либо общетеоретическое допущение, либо статистическая зависимость.

См. также

  • Автокорреляционная функция
  • Взаимнокорреляционная функция
  • Ковариация
  • Коэффициент детерминации
  • Регрессионный анализ

Wikimedia Foundation. 2010.

Коэффициент корреляции отражает степень взаимосвязи между двумя показателями. Всегда принимает значение от -1 до 1. Если коэффициент расположился около 0, то говорят об отсутствии связи между переменными.

Если значение близко к единице (от 0,9, например), то между наблюдаемыми объектами существует сильная прямая взаимосвязь. Если коэффициент близок к другой крайней точке диапазона (-1), то между переменными имеется сильная обратная взаимосвязь. Когда значение находится где-то посередине от 0 до 1 или от 0 до -1, то речь идет о слабой связи (прямой или обратной). Такую взаимосвязь обычно не учитывают: считается, что ее нет.

Расчет коэффициента корреляции в Excel

Рассмотрим на примере способы расчета коэффициента корреляции, особенности прямой и обратной взаимосвязи между переменными.

Значения показателей x и y:

Y – независимая переменная, x – зависимая. Необходимо найти силу (сильная / слабая) и направление (прямая / обратная) связи между ними. Формула коэффициента корреляции выглядит так:


Чтобы упростить ее понимание, разобьем на несколько несложных элементов.

Между переменными определяется сильная прямая связь.

Встроенная функция КОРРЕЛ позволяет избежать сложных расчетов. Рассчитаем коэффициент парной корреляции в Excel с ее помощью. Вызываем мастер функций. Находим нужную. Аргументы функции – массив значений y и массив значений х:

Покажем значения переменных на графике:


Видна сильная связь между y и х, т.к. линии идут практически параллельно друг другу. Взаимосвязь прямая: растет y – растет х, уменьшается y – уменьшается х.



Матрица парных коэффициентов корреляции в Excel

Корреляционная матрица представляет собой таблицу, на пересечении строк и столбцов которой находятся коэффициенты корреляции между соответствующими значениями. Имеет смысл ее строить для нескольких переменных.

Матрица коэффициентов корреляции в Excel строится с помощью инструмента «Корреляция» из пакета «Анализ данных».


Между значениями y и х1 обнаружена сильная прямая взаимосвязь. Между х1 и х2 имеется сильная обратная связь. Связь со значениями в столбце х3 практически отсутствует.

Заметьте! Решение вашей конкретной задачи будет выглядеть аналогично данному примеру, включая все таблицы и поясняющие тексты, представленные ниже, но с учетом ваших исходных данных…

Задача:
Имеется связанная выборка из 26 пар значений (х k ,y k ):

k 1 2 3 4 5 6 7 8 9 10
x k 25.20000 26.40000 26.00000 25.80000 24.90000 25.70000 25.70000 25.70000 26.10000 25.80000
y k 30.80000 29.40000 30.20000 30.50000 31.40000 30.30000 30.40000 30.50000 29.90000 30.40000

k 11 12 13 14 15 16 17 18 19 20
x k 25.90000 26.20000 25.60000 25.40000 26.60000 26.20000 26.00000 22.10000 25.90000 25.80000
y k 30.30000 30.50000 30.60000 31.00000 29.60000 30.40000 30.70000 31.60000 30.50000 30.60000

k 21 22 23 24 25 26
x k 25.90000 26.30000 26.10000 26.00000 26.40000 25.80000
y k 30.70000 30.10000 30.60000 30.50000 30.70000 30.80000

Требуется вычислить/построить:
- коэффициент корреляции;
- проверить гипотезу зависимости случайных величин X и Y, при уровне значимости α = 0.05 ;
- коэффициенты уравнения линейной регрессии;
- диаграмму рассеяния (корреляционное поле) и график линии регрессии;

РЕШЕНИЕ:

1. Вычисляем коэффициент корреляции.

Коэффициент корреляции - это показатель взаимного вероятностного влияния двух случайных величин. Коэффициент корреляции R может принимать значения от -1 до +1 . Если абсолютное значение находится ближе к 1 , то это свидетельство сильной связи между величинами, а если ближе к 0 - то, это говорит о слабой связи или ее отсутствии. Если абсолютное значение R равно единице, то можно говорить о функциональной связи между величинами, то есть одну величину можно выразить через другую посредством математической функции.


Вычислить коэффициент корреляции можно по следующим формулам:
n
Σ
k = 1
(x k -M x) 2 , σ y 2 =
M x =
1
n
n
Σ
k = 1
x k , M y =

или по формуле

R x,y =
M xy - M x M y
S x S y
(1.4), где:
M x =
1
n
n
Σ
k = 1
x k , M y =
1
n
n
Σ
k = 1
y k , M xy =
1
n
n
Σ
k = 1
x k y k (1.5)
S x 2 =
1
n
n
Σ
k = 1
x k 2 - M x 2 , S y 2 =
1
n
n
Σ
k = 1
y k 2 - M y 2 (1.6)

На практике, для вычисления коэффициента корреляции чаще используется формула (1.4) т.к. она требует меньше вычислений. Однако если предварительно была вычислена ковариация cov(X,Y) , то выгоднее использовать формулу (1.1), т.к. кроме собственно значения ковариации можно воспользоваться и результатами промежуточных вычислений.

1.1 Вычислим коэффициент корреляции по формуле (1.4) , для этого вычислим значения x k 2 , y k 2 и x k y k и занесем их в таблицу 1.

Таблица 1


k
x k y k х k 2 y k 2 х k y k
1 2 3 4 5 6
1 25.2 30.8 635.04000 948.64000 776.16000
2 26.4 29.4 696.96000 864.36000 776.16000
3 26.0 30.2 676.00000 912.04000 785.20000
4 25.8 30.5 665.64000 930.25000 786.90000
5 24.9 31.4 620.01000 985.96000 781.86000
6 25.7 30.3 660.49000 918.09000 778.71000
7 25.7 30.4 660.49000 924.16000 781.28000
8 25.7 30.5 660.49000 930.25000 783.85000
9 26.1 29.9 681.21000 894.01000 780.39000
10 25.8 30.4 665.64000 924.16000 784.32000
11 25.9 30.3 670.81000 918.09000 784.77000
12 26.2 30.5 686.44000 930.25000 799.10000
13 25.6 30.6 655.36000 936.36000 783.36000
14 25.4 31 645.16000 961.00000 787.40000
15 26.6 29.6 707.56000 876.16000 787.36000
16 26.2 30.4 686.44000 924.16000 796.48000
17 26 30.7 676.00000 942.49000 798.20000
18 22.1 31.6 488.41000 998.56000 698.36000
19 25.9 30.5 670.81000 930.25000 789.95000
20 25.8 30.6 665.64000 936.36000 789.48000
21 25.9 30.7 670.81000 942.49000 795.13000
22 26.3 30.1 691.69000 906.01000 791.63000
23 26.1 30.6 681.21000 936.36000 798.66000
24 26 30.5 676.00000 930.25000 793.00000
25 26.4 30.7 696.96000 942.49000 810.48000
26 25.8 30.8 665.64000 948.64000 794.64000


1.2. Вычислим M x по формуле (1.5) .

1.2.1. x k

x 1 + x 2 + … + x 26 = 25.20000 + 26.40000 + ... + 25.80000 = 669.500000

1.2.2.

669.50000 / 26 = 25.75000

M x = 25.750000

1.3. Аналогичным образом вычислим M y .

1.3.1. Сложим последовательно все элементы y k

y 1 + y 2 + … + y 26 = 30.80000 + 29.40000 + ... + 30.80000 = 793.000000

1.3.2. Разделим полученную сумму на число элементов выборки

793.00000 / 26 = 30.50000

M y = 30.500000

1.4. Аналогичным образом вычислим M xy .

1.4.1. Сложим последовательно все элементы 6-го столбца таблицы 1

776.16000 + 776.16000 + ... + 794.64000 = 20412.830000

1.4.2. Разделим полученную сумму на число элементов

20412.83000 / 26 = 785.10885

M xy = 785.108846

1.5. Вычислим значение S x 2 по формуле (1.6.) .

1.5.1. Сложим последовательно все элементы 4-го столбца таблицы 1

635.04000 + 696.96000 + ... + 665.64000 = 17256.910000

1.5.2. Разделим полученную сумму на число элементов

17256.91000 / 26 = 663.72731

1.5.3. Вычтем из последнего числа квадрат величины M x получим значение для S x 2

S x 2 = 663.72731 - 25.75000 2 = 663.72731 - 663.06250 = 0.66481

1.6. Вычислим значение S y 2 по формуле (1.6.) .

1.6.1. Сложим последовательно все элементы 5-го столбца таблицы 1

948.64000 + 864.36000 + ... + 948.64000 = 24191.840000

1.6.2. Разделим полученную сумму на число элементов

24191.84000 / 26 = 930.45538

1.6.3. Вычтем из последнего числа квадрат величины M y получим значение для S y 2

S y 2 = 930.45538 - 30.50000 2 = 930.45538 - 930.25000 = 0.20538

1.7. Вычислим произведение величин S x 2 и S y 2 .

S x 2 S y 2 = 0.66481 0.20538 = 0.136541

1.8. Извлечем и последнего числа квадратный корень, получим значение S x S y .

S x S y = 0.36951

1.9. Вычислим значение коэффициента корреляции по формуле (1.4.) .

R = (785.10885 - 25.75000 30.50000) / 0.36951 = (785.10885 - 785.37500) / 0.36951 = -0.72028

ОТВЕТ: R x,y = -0.720279

2. Проверяем значимость коэффициента корреляции (проверяем гипотезу зависимости).

Поскольку оценка коэффициента корреляции вычислена на конечной выборке, и поэтому может отклоняться от своего генерального значения, необходимо проверить значимость коэффициента корреляции. Проверка производится с помощью t -критерия:

t =
R x,y
n - 2
1 - R 2 x,y
(2.1)

Случайная величина t следует t -распределению Стьюдента и по таблице t -распределения необходимо найти критическое значение критерия (t кр.α) при заданном уровне значимости α . Если вычисленное по формуле (2.1) t по модулю окажется меньше чем t кр.α , то зависимости между случайными величинами X и Y нет. В противном случае, экспериментальные данные не противоречат гипотезе о зависимости случайных величин.


2.1. Вычислим значение t -критерия по формуле (2.1) получим:
t =
-0.72028
26 - 2
1 - (-0.72028) 2
= -5.08680

2.2. Определим по таблице t -распределения критическое значение параметра t кр.α

Искомое значение t кр.α располагается на пересечении строки соответствующей числу степеней свободы и столбца соответствующего заданному уровню значимости α .
В нашем случае число степеней свободы есть n - 2 = 26 - 2 = 24 и α = 0.05 , что соответствует критическому значению критерия t кр.α = 2.064 (см. табл. 2)

Таблица 2 t -распределение

Число степеней свободы
(n - 2)
α = 0.1 α = 0.05 α = 0.02 α = 0.01 α = 0.002 α = 0.001
1 6.314 12.706 31.821 63.657 318.31 636.62
2 2.920 4.303 6.965 9.925 22.327 31.598
3 2.353 3.182 4.541 5.841 10.214 12.924
4 2.132 2.776 3.747 4.604 7.173 8.610
5 2.015 2.571 3.365 4.032 5.893 6.869
6 1.943 2.447 3.143 3.707 5.208 5.959
7 1.895 2.365 2.998 3.499 4.785 5.408
8 1.860 2.306 2.896 3.355 4.501 5.041
9 1.833 2.262 2.821 3.250 4.297 4.781
10 1.812 2.228 2.764 3.169 4.144 4.587
11 1.796 2.201 2.718 3.106 4.025 4.437
12 1.782 2.179 2.681 3.055 3.930 4.318
13 1.771 2.160 2.650 3.012 3.852 4.221
14 1.761 2.145 2.624 2.977 3.787 4.140
15 1.753 2.131 2.602 2.947 3.733 4.073
16 1.746 2.120 2.583 2.921 3.686 4.015
17 1.740 2.110 2.567 2.898 3.646 3.965
18 1.734 2.101 2.552 2.878 3.610 3.922
19 1.729 2.093 2.539 2.861 3.579 3.883
20 1.725 2.086 2.528 2.845 3.552 3.850
21 1.721 2.080 2.518 2.831 3.527 3.819
22 1.717 2.074 2.508 2.819 3.505 3.792
23 1.714 2.069 2.500 2.807 3.485 3.767
24 1.711 2.064 2.492 2.797 3.467 3.745
25 1.708 2.060 2.485 2.787 3.450 3.725
26 1.706 2.056 2.479 2.779 3.435 3.707
27 1.703 2.052 2.473 2.771 3.421 3.690
28 1.701 2.048 2.467 2.763 3.408 3.674
29 1.699 2.045 2.462 2.756 3.396 3.659
30 1.697 2.042 2.457 2.750 3.385 3.646
40 1.684 2.021 2.423 2.704 3.307 3.551
60 1.671 2.000 2.390 2.660 3.232 3.460
120 1.658 1.980 2.358 2.617 3.160 3.373
1.645 1.960 2.326 2.576 3.090 3.291


2.2. Сравним абсолютное значение t -критерия и t кр.α

Абсолютное значение t -критерия не меньше критического t = 5.08680, t кр.α = 2.064, следовательно экспериментальные данные, с вероятностью 0.95 (1 - α ), не противоречат гипотезе о зависимости случайных величин X и Y.

3. Вычисляем коэффициенты уравнения линейной регрессии.

Уравнение линейной регрессии представляет собой уравнение прямой, аппроксимирующей (приблизительно описывающей) зависимость между случайными величинами X и Y. Если считать, что величина X свободная, а Y зависимая от Х, то уравнение регрессии запишется следующим образом


Y = a + b X (3.1), где:

b = R x,y
σ y
σ x
= R x,y
S y
S x
(3.2),
a = M y - b M x (3.3)

Рассчитанный по формуле (3.2) коэффициент b называют коэффициентом линейной регрессии. В некоторых источниках a называют постоянным коэффициентом регрессии и b соответственно переменным.

Погрешности предсказания Y по заданному значению X вычисляются по формулам:

Величину σ y/x (формула 3.4) еще называют остаточным средним квадратическим отклонением , оно характеризует уход величины Y от линии регрессии, описываемой уравнением (3.1), при фиксированном (заданном) значении X.

.
S y 2 / S x 2 = 0.20538 / 0.66481 = 0.30894. Извлечем из последнего числа квадратный корень - получим:
S y / S x = 0.55582

3.3 Вычислим коэффициент b по формуле (3.2)

b = -0.72028 0.55582 = -0.40035

3.4 Вычислим коэффициент a по формуле (3.3)

a = 30.50000 - (-0.40035 25.75000) = 40.80894

3.5 Оценим погрешности уравнения регрессии .

3.5.1 Извлечем из S y 2 квадратный корень получим:

= 0.31437
3.5.4 Вычислим относительную погрешность по формуле (3.5)

δ y/x = (0.31437 / 30.50000)100% = 1.03073%

4. Строим диаграмму рассеяния (корреляционное поле) и график линии регрессии.

Диаграмма рассеяния - это графическое изображение соответствующих пар (x k , y k ) в виде точек плоскости, в прямоугольных координатах с осями X и Y. Корреляционное поле является одним из графических представлений связанной (парной) выборки. В той же системе координат строится и график линии регрессии. Следует тщательно выбрать масштабы и начальные точки на осях, чтобы диаграмма была максимально наглядной.

4.1. Находим минимальный и максимальный элемент выборки X это 18-й и 15-й элементы соответственно, x min = 22.10000 и x max = 26.60000.

4.2. Находим минимальный и максимальный элемент выборки Y это 2-й и 18-й элементы соответственно, y min = 29.40000 и y max = 31.60000.

4.3. На оси абсцисс выбираем начальную точку чуть левее точки x 18 = 22.10000, и такой масштаб, чтобы на оси поместилась точка x 15 = 26.60000 и отчетливо различались остальные точки.

4.4. На оси ординат выбираем начальную точку чуть левее точки y 2 = 29.40000, и такой масштаб, чтобы на оси поместилась точка y 18 = 31.60000 и отчетливо различались остальные точки.

4.5. На оси абсцисс размещаем значения x k , а на оси ординат значения y k .

4.6. Наносим точки (x 1 , y 1 ), (x 2 , y 2 ),…,(x 26 , y 26 ) на координатную плоскость. Получаем диаграмму рассеяния (корреляционное поле), изображенное на рисунке ниже.

4.7. Начертим линию регрессии.

Для этого найдем две различные точки с координатами (x r1 , y r1) и (x r2 , y r2) удовлетворяющие уравнению (3.6), нанесем их на координатную плоскость и проведем через них прямую. В качестве абсциссы первой точки возьмем значение x min = 22.10000. Подставим значение x min в уравнение (3.6), получим ординату первой точки. Таким образом имеем точку с координатами (22.10000, 31.96127). Аналогичным образом получим координаты второй точки, положив в качестве абсциссы значение x max = 26.60000. Вторая точка будет: (26.60000, 30.15970).

Линия регрессии показана на рисунке ниже красным цветом

Обратите внимание, что линия регрессии всегда проходит через точку средних значений величин Х и Y, т.е. с координатами (M x , M y).

КУРСОВАЯ РАБОТА

Тема: Корреляционный анализ

Введение

1. Корреляционный анализ

1.1 Понятие корреляционной связи

1.2 Общая классификация корреляционных связей

1.3 Корреляционные поля и цель их построения

1.4 Этапы корреляционного анализа

1.5 Коэффициенты корреляции

1.6 Нормированный коэффициент корреляции Браве-Пирсона

1.7 Коэффициент ранговой корреляции Спирмена

1.8 Основные свойства коэффициентов корреляции

1.9 Проверка значимости коэффициентов корреляции

1.10 Критические значения коэффициента парной корреляции

2. Планирование многофакторного эксперимента

2.1 Условие задачи

2.2 Определение центр плана (основной уровень) и уровня варьирования факторов

2.3 Построение матрицы планирования

2.4 Проверка однородности дисперсии и равноточности измерения в разных сериях

2.5 Коэффициенты уравнения регрессии

2.6 Дисперсия воспроизводимости

2.7 Проверка значимости коэффициентов уравнения регрессии

2.8 Проверка адекватности уравнения регрессии

Заключение

Список литературы

ВВЕДЕНИЕ

Планирование эксперимента -математико-статистическая дисциплина, изучающая методы рациональной организации экспериментальных исследований - от оптимального выбора исследуемых факторов и определения собственно плана эксперимента в соответствии с его целью до методов анализа результатов. Начало планирования эксперимента положили труды английского статистика Р.Фишера (1935), подчеркнувшего, что рациональное планирование экспериментадаёт не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. В 60-х годах 20 века сложилась современная теория планирования эксперимента. Её методы тесно связаны с теорией приближения функций и математическим программированием. Построены оптимальные планы и исследованы их свойства для широкого класса моделей.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

Планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

Планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

Планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

Планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

Планирование при изучении динамических процессов и т.д.

Целью изучения дисциплины является подготовка студентов к производственно-технической деятельности по специальности с применением методов теории планирования и современных информационных технологий.

Задачи дисциплины: изучение современных методов планирования, организации и оптимизации научного и промышленного эксперимента, проведения экспериментов и обработки полученных результатов.

1. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

1.1 Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, может ли рост влиять на вес человека или может ли давление влиять на качество продукции?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь - это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем больше рост, тем больше вес человека. Однако из этого правила имеются исключения, когда относительно низкие люди имеют избыточный вес, и, наоборот, астеники, при высоком росте имеют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи - это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статистики. Оба термина - корреляционная связь и корреляционная зависимость - часто используются как синонимы. Зависимость подразумевает влияние, связь - любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака.

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Корреляционные связи различаютсяпо форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (рисунок 1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.

Рисунок 1 - Связь между эффективностью решения задачи и силой мотивационной тенденции

По направлению корреляционная связь может быть положительной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - низкие значения другого (рисунок 2). При отрицательной корреляции соотношения обратные (рисунок 3). При положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак.

Рисунок 2 – Прямая корреляция

Рисунок 3 – Обратная корреляция


Рисунок 4 – Отсутствие корреляции

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции. Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

1.2 Общая классификация корреляционных связей

В зависимости от коэффициента корреляции различают следующие корреляционные связи:

Сильная, или тесная при коэффициенте корреляции r>0,70;

Средняя (при 0,50

Умеренная (при 0,30

Слабая (при 0,20

Очень слабая (при r<0,19).

1.3 Корреляционные поля и цель их построения

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (x i , y i) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i и y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения x i и y i . Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x i и y i графически в виде геометрического места точек в системе прямоугольных координат. Эту графическую зависимость называются также диаграммой рассеивания или корреляционным полем.
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: μ x , μ y – средние значения (математические ожидания); σ x ,σ y – стандартные отклонения случайных величин Х и Y и р – коэффициент корреляции, который является мерой связи между случайными величинами Х и Y.
Если р = 0, то значения, x i , y i , полученные из двумерной нормальной совокупности, располагаются на графике в координатах х, у в пределах области, ограниченной окружностью (рисунок 5, а). В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин Х и Y.